• F. Espejel-Ayala
  • M. Solís-López
  • R. Schouwenaars
  • R.M. Ramírez-Zamora
Keywords: zeolites, exchange ionic, copper mining tailing, valorization of wastes, hydrothermal treatment


Synthesis of zeolite P using copper mine tailing as raw material was achieved by means of two steps in the process: fusion with NaOH and hydrothermal treatment. The copper mine tailing was calcined at 900° C during 2 hours in a 1:1.5 (w/w) ratio. Then, hydrothermal treatment was applied at 60° C in a 0.172 g/mL ratio. Several times of synthesis were evaluated, 2, 4, 8, 16, 24, 36, 48, 60, 66 and 72 hours. According to the Cationic Exchange Capacity (CEC), 36 hours of time was selected as optimal time. A zeolitic material with 93.77% of zeolite P and 3.85% of cancrinite was obtained with a CEC=2.016 meq/g. The CEC obtained is an excellent value to remove heavy metals presents in water and soils. The use of copper mine tailing to synthesize zeolites is a friendly environmental option to prevent the generation of Acid Mine Drainage (AMD). Moreover, the synthesized zeolites have great potential for use in the wastewater treatment to remove heavy metals and ammonium.


Barnes, M.C., Addai-Mensah, J., Gerson, A.R. (1999). The mechanism of the sodalite-tocancrinite phase transformation in synthetic spent Bayer liquor. Microporous and Mesoporous Materials 31, 287-302.

Barrer R. M. Hydrothermal chemistry of zeolites. Academic Press. USA. 1982. 360 pp.

Breck, D. W., 1974. Zeolite molecular sieves. Structure, chemistry, and use, John Wiley & Sons, New York, 771 p.

Cao J-L., Liu X-W., Fu R., Tan Z-Y. (2008). Magnetic P zeolites: Synthesis, characterization and behavior in potassium extraction from seawater. Separation and Purification Technology 63, 92-100.

Cundy C. S., Cox, P. A. (2003). The hydrothermal synthesis of zeolites: history and development from the earliest to the present time. Chemical Review 103, 663-701.

Cundy C. S., Cox P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials 82, 1-85.

Gilbert, J. E., Mosset, A., (1998). Preparation of impurity-free zeolites from coal-mine schists. European Journal of Solid State and Inorganic Chemistry 35, 447-458.

Holler, H., Wirsching, U. (1985). Zeolites formation from fly ash. Forschritte der Mineralogie 63, 21-43.

Jacobs, P.T., Derouane, E.G., Weitkamp, J. (1981). Evidence for X-Ray-amorphous zeolites. Journal of the Chemical Society, Chemical Communications 591-593. DOI: 10.1039/C39810000591.

Jafari, M., Mohammadi, T., Kazemimoghadam, M. (2014). Synthesis and characterization of ultrafine sub-micron Na-LTA zeolite particles prepared via hydrothermal template-free method. Ceramics International 40, 12075- 12080.

Katovic A., Subotic B., Smit I., Despotovi'c L. A. (1989). Crystallization of tetragonal (B8) and cubic (B1) modifications of zeolite NaP from freshly prepared gel. Part 1. Mechanism of the crystallization. Zeolites 9, 45-53.

Latham K., William C. D. Duke C. (1996). The synthesis of iron cancrinite using tetrahedral iron species. Zeolites 17, 513-516.

Meza-Figueroa D., Maier R. M., de la O-Villanueva M., Gómez-Álvarez A., Moreno-Zazueta A., Rivera J., Campillo A., Grandlic Ch. J., Anaya R., Palafox-Reyes J. (2009). The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, México. Chemosphere 77, 140-147.

Molina, A., Poole, C. (2004). A comparative study using two methods to produce zeolites from fly ash. Minerals Engineering 17, 167-173.

Park M., Choi C.L., Lim W.T., Kim M.C., Choi J. and Heo, N.H. (2000). Moltensalt method for the synthesis of zeolitic materials: II. Characterization of zeolitic maerials. Microporous and Mesoporous Materials 37, 91-98

Qiu W., Zheng Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal 145, 483-488.

Querol X., Umana J.C., Plana F., Alastuey A., López-Soler A., Medinaceli A., Valero A., Domingo M.J., García-Rojo E. (2001). Synthesis of zeolites from fly ashes at pilot plant scale. Examples of potential applications. Fuel 80, 857-865.

Rietveld H. M. (1969). A profile refinament method for nuclear and magnetic structures. Journal of Applied Crystallography 2, 65-71.

Ríıos, C.A., Williams, C.D., Fullen, M.A. (2009). Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clays Science 42, 446-454.

Sanhueza, V., Kelm, U., Alfaro, G. (2011). S´ıntesis de zeolita NaP-GIS con diferentes morfologías a partir de dos diatomitas. Revista Mexicana de Ingeniería Química 10, 117-123.

Somerset V. S., Petrik L. F., White R. A., Klink M. J., Key D. and Iwuoha E. (2004). The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites. Talanta 64, 109-114
How to Cite
Espejel-Ayala, F., Solís-López, M., Schouwenaars, R., & Ramírez-Zamora, R. (2020). SYNTHESIS OF ZEOLITE P USING COPPER MINING TAILINGS. Revista Mexicana De Ingeniería Química, 14(1), 205-212. Retrieved from