MORPHOLOGICAL AND THERMAL CHARACTERIZATION OF A HIGH POROUS COMPOSITE OF BIOMATERIAL PHEMA-CHITOSAN-CERAMIC (HYDROXYAPATITE)

  • A.M. Salgado-Delgado División de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec
  • Z. Vargas-Galarza División de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec
  • R. Salgado-Delgado División de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec
  • E. García-Hernández División de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec
  • W. N. Hernández-Díaz División de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec
  • E. Rubio-Rosas Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla
  • R. Salgado-Rodríguez Centro de Graduados e Investigación de Química, Instituto Tecnológico de Tijuana
Keywords: pHEMA, chitosan, ceramics, porous material, interpenetrating network

Abstract

Poly (2-hydroxyethyl methacrylate) (pHEMA) and chitosan were combined to obtain a biocomposite material with fillers of Hydroxyapatite through foaming gas effect. In this paper the morphological characterization of the composite biomaterial by scanning electron microscopy (SEM) to analyze the generation of pores is reported, as well as a three-dimensional interpenetrating network. Thermal stability was evaluated by analysis of thermogravimetry (TGA-DTG). The results obtained by SEM indicate the generation a high porosity and the interpenetrated network in the porous material, in addition to the discussion of the results in terms of the thermal stability.

References

Atzet S., Curtin S., Trinh P., Bryant S., Ratner B. (2008). Degradable poly(2-hydroxyethyl methacrylate)-copolycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 9, 3370-3377.

Ávila A., Bierbrauer K., Pucci G., López-González M., Strumia M. (2012). Study of optimization of the synthesis and propierties of films based on grafted chitosan. Journal of Food Engineering 109, 752-761.

Çetin D., Kahraman A. S., Gumüsderelioglu M. (2011). Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Journal of Biomaterials Science 22, 1157-1178.

Das N. (2013). Preparation methods and properties of hydrogel: a review. International Journal of Pharmacy and Pharmaceutical Science 5, 112- 117.

Figueiredo A. G. P. R., Figueiredo A. R. P., Alonso-Varona A., Fernandes S. C. M., Palomares T., Rubio-Azpeitia E., BarrosTimmons A., Silvestre A. J. D., Neto C. P., Freire C. S. R. (2013). Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films. BioMed Research International 2013, Pp. 14.

Hofmann S., Stok K.S., Kohler T., Meinel A. J., Müller R. (2014). Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds. Acta Biomaterialia 10, 308- 317.

Horák D., Hlídková H., Hradil J., Lapčíková M., Šlouf M. (2008) Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization. Polymer 49, 2046-2054.

Huang J., Zhao D., Dangaria S. J., Luan X., Diekwisch T.G.H., Jiang G., Saiz E., Liu G., Tomsia A. P. (2013). Combinatorial design of hydrolytically degradable, bonelike biocomposites based on PHEMA and hydroxyapatite. Polymer 54, 909-919.

Kopecek J. (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. Journal of Polymer Science A 47, 5929-5946

Nita L. E., Chiriac A. P., Nistor M., Budtova T. (2013). Upon the delivery properties of a polymeric system based on poly(2- hydroxyethyl methacrylate) prepared with proactive colloids. Journal of Biomaterials and Nanobiothechnology 4,357-364.

Okamoto M., John B. (2013). Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science 38, 1487-1503.

Pielichowska K., Blazewicz S., (2010). Bioactive polymer/hydroxyapatite (nano)composites for bone tissue regeneration. Advances in Polymer Science 232, 97-207.

Poinern G.J.E., Brundavanam R., Thi Le X., Djordjevic S., Prokic M., Fawcett D. (2011). Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. International Journal of Nanomedicine 6, 2083-2095.

Rodrigues C.V.M., Serricella P., Linhares A.B.R., Guerdes R.M., Borojevic R., Rossi M.A., Duarte M.E.L., Farina M. (2003). Characterization of a bovine collagenhydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24, 4987-4997.

Sasaki S., Funamoto S., Hashimoto Y., Kimura T., Honda T., Hattori S., Kobayashi H., Kishida A., Mochizuki M. (2009). In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Molecular Vision 15, 2022-2028.
Published
2020-01-27
How to Cite
Salgado-Delgado, A., Vargas-Galarza, Z., Salgado-Delgado, R., García-Hernández, E., Hernández-Díaz, W. N., Rubio-Rosas, E., & Salgado-Rodríguez, R. (2020). MORPHOLOGICAL AND THERMAL CHARACTERIZATION OF A HIGH POROUS COMPOSITE OF BIOMATERIAL PHEMA-CHITOSAN-CERAMIC (HYDROXYAPATITE). Revista Mexicana De Ingeniería Química, 15(2), 625-632. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1239