Optimisation and dose responses of bioluminescent bacterial biosensors induced with target hydrocarbons

  • H.I. Ibrahim Gombe State University
  • M. Abdulrasheed
  • A.F. Umar Abubakar Tafawa Balewa University
  • H. Lawal
  • N. Ramírez
  • S.A. Ahmad
Keywords: Biosensors, Bioreporters, luxCDABE, bioavailability, naphthalene, toluene, Isopropylbenzene, hydrocarbon


Routine analytical methods are constrained in the speed of application, sample throughput and inability to determine the right bioavailable loading of pollutants. Microbial biosensor technology resolved these constraints by offering the most rapid, sensitive, reliable and cost-effective technology, especially in a bioavailable context. This study describes the growth characterisation and optimisation of three different lux-marked biosensors and their induction bioassay, thus testing their responses to doses of target hydrocarbons (naphthalene, toluene, Isopropylbenzene) and solution of mixed hydrocarbons. These biosensors, Pseudomonas fluorescence HK44, Escherichia coli HMS174 and Pseudomonas putidaTVA8 harbours luxCDABE reporter genes coupled to induction by hydrocarbons. Biosensors harvested at optimal exponential phase and induced with hydrocarbon using the optimised assay conditions are highly sensitive and responsive to their inducers in a proportionate dose-dependent status. The established dose responses of these catabolic biosensors signify the prospect of extrapolation for estimating the genuine contamination loading of pollutants for environmental relevance. However, several factors may contribute to the quenching effect at high concentration of inducers. Robust responsiveness to mixed hydrocarbon solution has been also realised accentuating its feasibility in analysing of real environmental samples containing heterogenous pollutants. This study emphasises the suitability of bioluminescent bacterial biosensors for pollutants analysis and notably the detection of soluble bioavailable fractions of diverse hydrocarbons, hence, serves as a reliable bioindicator of hydrocarbon pollution in an environment. Even so, the real value of biosensors is for a suite of ecologically justified biosensors to be applied in complementary combinations with other focused analytical or chemical methods for broad and resourceful inference.


Ambrosoli, R., Petruzzelli, L., Luis Minati, J. and Ajmone Marsan, F. (2005). Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere, 60, 1231-1236.

Applegate, B.M., Kehrmeyer, S.R. and Sayler, G.S. (1998). A chromosomally based tod luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene, and xylene (btex) sensing. Applied Environmental Microbiology, 64, 2730-2735.

Atlas, R.M., Sayler, G., Burlage, R.S. and Bej, A.K. (1992). Molecular approaches for environmental monitoring of microorganisms. Biotechniques, 12, 706-717.

Berset, J., Ejem, M., Holzer, R. and Lischer, P. (1999). Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Analytica Chimica Acta, 383, 263-275.

Bhattacharyya, J., Read, D., Amos, S., Dooley, S., Killham, K. and Paton, G.I. (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environmental Pollution, 134, 485-492.

Cisneros-de la Cueva, S., Mart ́ınez-Prado, M.A. and Lo ́pez-Miranda, J. (2016). Aerobic degradation of diesel by a pure culture of Aspergillus terreus KP862582. Revista Mexicana de Ingeniera Quimica, 15, 347-360.

Close, M.D., Ripp, S. and Sayler, G.S. (2009). Reporter proteins in whole-cell optical bioreporter detection system, biosensor integrations, and biosensing applications. Sensors, 9, 9147-9174.

Eaton, R.W. and Timmis, K.N. (1986). Characterization of a plasmid specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. Journal of Bacteriology, 168, 123-131.

Estelmann, S., Blank, I., Feldmann, A. and Boll, M. (2015). Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Molecular Microbiology, 95, 162-172.

Godwill, A.E. (2014). Genetic engineering on microorganism: the ecological and bioethical implications. European Journal of Biotechnology and Bioscience, 1, 27-33.

Harkins, M., Porter, A.J. and Paton, G.I. (2004). The role of host organism, transcriptional switches and reporter mechanisms in the performance of hg-induced biosensors. Journal of Applied Microbiology, 97, 1192-1200.

Heitzer, A., Malachowsky, K., Thonnard, J.E., Bienkowaski, P.R., White, D.C. and Sayler, G.S. (1994). Optical biosensor for environmental online monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Applied and Environmental Microbiology, 60, 1487-1494.

Heitzer, A., Applegate, B., Kehrmeyer, S., Pinkart, H., Webb, O.F., Phelps, T.J., White, D.C. and Sayler, G.S. (1998) Physiological considerations of environmental applications of lux fusions. Journal of Microbiological Methods, 33, 45-57.

Hussein, I.I. (2012). Application of bioluminescence-based microbial biosensors for diagnosis of hydrocarbon in groundwater samples. MSc Dissertation, University of Aberdeen.

Hussein, I.I., Mansur, A. and Yusuf, M.A. (2016). Bacterial biosensors for diagnostic determination of hydrocarbon in refined oil product’s contaminated water samples. In: Microbes in the Spotlight. (Ed) A. Méndez-Vilas VI International Conference on Environmental, Industrial and Applied Microbiology - BioMicroWorld
2015, at Barcelona, Spain, Universal-Publishers.

Hynninen, A., Tönismann, K. and Virta, M. (2010). Improving the sensitivity of bacterial bioreporters for heavy metals. Bioengineered Bugs, 1, 132-138.
Hynninen, A. and Virta, M. (2010). Whole-cell bioreporters for the detection of bioavailable metals. Advances in Biochemical Engineering/-Biotechnology, 118, 31-63.

King, J.M., DiGrazia, P.M., Applegate, B., Burlage, J., Sanseverino, R., Dunbar, P., Larimer, F. and Sayler, G.S. (1990). Rapid, sensitive bioluminescence reporter technology for naphthalene exposure and biodegradation. Science, 249, 778-781.

Kleemann, R. and Meckenstock, R.U. (2011). Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiology Ecology, 78, 488-496.

Knopp, D., Seifert, M., Väänänen, V. and Niessner, R. (2000). Determination of polycyclic aromatic hydrocarbons in contaminated water and soil samples by immunological and chromatographic methods. Environmental Science and Technology, 34, 2035-2041.

Köhler, S., Belkin, S. and Schmid, R.D. (2000). Reporter gene bioas¬says in environmental analysis. Fresenius Journal of Analytical Chemistry, 366, 769-779.

Liu, L., Bilal, M., Duan, X. and Iqbal, H.M.N. (2019). Mitigation of environmental pollution by genetically engineered bacteria - current challenges and future perspectives. Science of the Total Environment, 667, 444-454.

Medina-Moreno, S.A., Jime ́nez-González, A., Gutie ́rrez-Rojas, M. and Lizardi-Jime ́nez, M.A. (2014). Hydrocarbon pollution studies of underwater sinkholes along Ruintana Roo as a function of tourism development in the Mexican Caribbean. Revista Mexicana de Ingeniera Quimica, 13, 509-516.

Meighen, E.A. (1988). Enzymes and genes from the lux operons of bioluminescent bacteria. Annual Review of Microbiology, 42, 151-176.

Mendoza-Madrigal, A.G., Chanona-Pérez, J.J., Hernández-Sánchez, H., Palacios-González, E., Calderón-Domínguez, G., Méndez-Méndez, J.V., Blasco, J. and Villa-Vargas, L.A. (2013). Mechanical biosensors in biological and food area: A review. Revista Mexicana de Ingeniera Quimica, 12, 205-225.

Meney, K.M., Davidson, C.M. and Litllejohn, D. (1998). Use of solid-phase extraction in the determination of benzene, toluene, ethylbenzene, xylene and cumene in spiked soil and investigation of soil spiking methods. Analyst, 123, 195-200.

O’Neill, S., Ripp, S., Megginson, C. and Davies, I.M. (2003). Microbial Detection of Polycyclic Aromatic Hydrocarbons in Contaminated Marine Sediment; Fisheries Research Services: Aberdeen, UK.

Paton, G.I., Reid, B.J. and Semple, K.T. (2009). Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environmental Pollution, 157, 1643-1648.

Paton, G.I., Palmer, G., Kindness, A., Campbell, C., Glover, L.A. and Killham, K. (1995). Use of luminescence-marked bacteria to assess copper bioavailability in malt whisky distillery effluent. Chemosphere, 31, 3217-3224.

Paton, G.I., Rattray, E.A., Campbell, C.D., Cresser, M.S., Glover, L.A., Meeussen, J.C. and Killham, K. (1997). Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Biological indicators of soil health. Pankhurst CE, Doube BM, Gupta VVSR (eds.). CAB International, 397-418.

Paton, G.I., Viventsova, E., Kumpene, J., Wilson, M.J., Weitz, H.J. and Dawson, J.J. (2006). An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Science of the Total Environment, 355, 106-117.

Poster, D.L., Schantz, M.M., Sander, L.C. and Wise, S.A. (2006). Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Analytical and Bioanalytical Chemistry, 386, 859-881.

Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J. and Kado, C.I. (1987). Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. Journal of Bacteriology, 169, 5101-5112.

Selifonova, O.V. and Eaton, R.W. (1996). Use of an ipb-lux fusion to study regulation of the isopropyl benzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment. Applied and Environmental Microbiology, 62, 778-783.

Shingleton, J.T., Applegate, B.A., Baker, A.J., Sayler, G.S. and Bienkowski, P.R. (2001). Quantification of toluene deoxygenase induction and kinetic modelling of TCE co-metabolism by Pseudomonas putida TVA8. Biotechnology and Bioengineering, 6, 341-350.

Shingleton, J.T., Applegate, B.M., Nagel, A.C., Bienkowsky, P.R. and Sayler, G.S. (1998). Induction of tod operon by trichloroethylene in Pseudomonas putida TVA8. Applied and Environmental Microbiology, 64, 5049-5052.

Sikkema, J, de Bont, J.A. and Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology Reviews, 59, 201-222.

Steinberg, S.M., Poziomek, E.J., Engelmann, W.H. and Rogers, K.R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere, 30, 2155-2197.

Tauriainen, S., Virta, M., Chang, W. and Karp, M. (1999). Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Analytical Biochemistry, 272, 191-198.

Trogl, J., Kuncova, G., Kubicova, L., Parik, P., Halova, J., Demnerova, K., Ripp, S. and Sayler, G. (2007). Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiologica, 52, 3-14.

Unge, A., Tombolini, R., Molbak, L. and Jansson, J.K. (1998). Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Applied Environmental Microbiology, 65, 813-821.

Van Der Meer, J.R. (2006). Analytics with engineered bacterial bioreporter strains and systems. Current Opinion in Biotechnology, 17, 1-3.

Van Dyk, T.K., Majarian, W.R., Konstantinov, K.B., Young, R.M., Dhurjati, P.S. and LaRossa, R.A. (1994). Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Applied and Environmental Microbiology, 60, 1414-1420.

Weitz, H.J., Ritchie, J.M., Bailey, D.A., Horsburgh, A.M., Killham, K. and Glover, A. (2001). Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing. FEMS Microbiology Letters, 197, 159-165.

Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A.P. and Heringa, M.B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Analytical and Bioanalytical Chemistry, 400, 915-929.

Yeh, H.W. and Ai, H.W. (2019). Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annual Review of Analytical Chemistry, 12, 129-150.
How to Cite
Ibrahim, H., Abdulrasheed, M., Umar, A., Lawal, H., Ramírez, N., & Ahmad, S. (2020). Optimisation and dose responses of bioluminescent bacterial biosensors induced with target hydrocarbons. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 187-199. https://doi.org/10.24275/rmiq/Bio1274