ABIOTIC STRESS BASED BIOPROCESSES FOR THE PRODUCTION OF HIGH VALUE ANTIOXIDANT PHENOLIC COMPOUND IN PLANTS: AN OVERVIEW

  • J.C. Sánchez-Rangel Centro de Biotecnología-FEMSA. Departamento de Biotecnología e Ingeniería de Alimentos. Tecnológico de Monterrey-Campus Monterrey. Escuela de Biotecnología y Alimentos
  • J. Benavides Centro de Biotecnología-FEMSA. Departamento de Biotecnología e Ingeniería de Alimentos. Tecnológico de Monterrey-Campus Monterrey. Escuela de Biotecnología y Alimentos
  • D.A. Jacobo-Velázquez Centro de Biotecnología-FEMSA. Departamento de Biotecnología e Ingeniería de Alimentos. Tecnológico de Monterrey-Campus Monterrey. Escuela de Biotecnología y Alimentos
Keywords: abiotic stresses, phenolic compound, wounding, UV-C light, plant tissue, by-products, downstream processing

Abstract

Phenolic compounds (PC) are secondary metabolites produced by plants that have diverse applications in the pharmaceutical, cosmetics, nutraceutical and food industries. Therefore, the design of bioprocesses for their production, extraction and purification is of major relevance. The application of postharvest abiotic stresses (i.e., wounding, modified atmospheres, UV radiation) can be used as an approach to increase the concentration of PC during postharvest of diverse plant tissues. Herein, we propose an abiotic stress based bioprocess for the production of high commercial value antioxidant PC. The strategy proposed was exemplified with experimental data showing how abiotic stresses can be applied to produce resveratrol and quercetin-3-O-glucoside in grapes, and chlorogenic acid in carrots. Finally, different procedures to extract and purify PC produced in the stressed plant tissue are discussed.

References

Balasundram, N., Sundram, K. and Samman, S. (2006). Phenolic compounds in plants and agriindustrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99, 191-203.

Becerra-Moreno, A., Benavides, J., CisnerosZevallos, L. and Jacobo-Velazquez, D.A. ´ (2012). Plants as biofactories: glyphosateinduced production of shikimic acid and phenolic antioxidants in wounded carrot tissue.

Journal of Agricultural and Food Chemistry 60, 11378-11386.

Benavides, J. and Rito-Palomares, M. (2008). Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. Journal of Chemical Technology and Biotechnology 83, 133-142.

Boskou, D. (2006). Sources of natural phenolic antioxidants. Trends in Food Science and Technology 17, 505-512.

Cantos, E., Espin, J.C. and Tomas-Barberan, F. (2001). Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol enriched table grapes: a new “functional” fruit? Journal of Agricultural and Food Chemistry 49, 5052-5058.

Careri, M., Corradini, C., Elviri, L., Nicoletti, I. and Zagnoni, I. (2003). Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. Journal of Agricultural and Food Chemistry 51, 5226- 5231.

Cisneros-Zevallos, L. (2003). The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and addingvalue of fresh fruits and vegetables. Journal of Food Science 68, 1560-1565.

Clifford, M.N. (2000). Chlorogenic acids and other cinnamates -nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture 80, 1033-1043.

de Beer, D., Joubert, E., Gelderblom, W.C.A. and Manley, M. (2002). Phenolic compounds: a review of their possible roles as in vivo antioxidants of wine. South African Journal for Enology and Viticulture 23, 48-61.

Dai, J. and Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313-7352.

Doran, P. M. (1995). Bioprocess Engineering Principles, Academic Press, London, U.K.

Du, W.X., Avena-Bustillos, R.J., Breksa-III, A.P. and McHugh, T.H. (2012). Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chemistry 134, 1862-1869.

Eichholz, I., Huyskens-Keil, S., Keller, A., Ulrich, D., Kroh, L.W. and Rohn S. (2011). UV-Binduced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chemistry 126, 60-64.

Escribano-Bailón, M. T. and Santos-Buelga, C. (2003). Polyphenol extraction from foods. In: Methods in polyphenol analysis. (T. EscribanoBailon, A. Day, S. De Pascual-Teresa, C. Rolando, C. Manach, C. Garcia-Viguera, K. Hostettmann Eds.), Pp. 1-16. Cambridge: Royal Society of Chemistry Ed. Great Britain.

Food and Agriculture Organization of the United Nations (2013). FAOSTAT. Available at: http://faostat.fao.org/site/291/default.aspx. Accessed: July 2012.

García-Márquez, E., Román-Guerrero, A., Pérez-Alonso, C., Cruz-Sosa, F., Jiménez-Alvarado, R., Vernon-Carter, E.J. (2012). Efecto de las condiciones de extracción solvente-temperatura en la actividad antioxidante y contenido de fenoles totales en extractos de Muitle y su perdida durante el almacenamiento a diferentes valores de pH. Revista Mexicana de Ingeniería Química 11, 1-10.

Gharras, H.E. (2009). Polyphenols: food sources, properties and applications - a review. International Journal of Food Science and Technology 44, 2512-2518.

González-Aguilar, G.A., Villa-Rodriguez, J.A., Ayala-Zavala, J.F. and Yahia, E.M. (2010). Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science and Technology 21, 475-482.

Goñi, I. and Hervert-Hernández, D. (2011). By- ´ Products from Plant Foods are Sources of Dietary Fibre and Antioxidants. In: Phytochemicals - bioactivities and impact on health, (I. Rasooli ed.), Pp. 95-116. InTech, USA.

Heredia, J.B. and Cisneros-Zevallos, L. (2009a). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry 115, 1500-1508.

Heredia, J.B. and Cisneros-Zevallos, L. (2009b). The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biology and Technology 51, 242- 249.

Howles, P.A., Sewalt, V.J.H., Paiva, N.L., Elkind, Y., Bate, N.J., Lamb, C. and Dixon, R.A. (1996). Overexpression of L-phenylalanine ammonialyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiology 112, 1617-1624.

Huang, W.Y., Cai, Y.Z., Hyde, K.D., Corke, H. and Sun, M. (2008). Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Diversity 33, 61-75.

Isabelle, M., Lee, B.L., Lim, M.T., Koh, W.P., Huang, D. and Ong, C.N. (2010a). Antioxidant activity and profiles of common fruits in Singapore. Food Chemistry 123, 77-84.

Isabelle, M., Lee, B.L., Lim, M.T., Koh, W.P., Huang, D. and Ong, C.N. (2010b). Antioxidant activity and profiles of common vegetables in Singapore. Food Chemistry 120, 993-1003.

Jacobo-Velázquez, D.A. (2010). Physiological and molecular mechanisms governing the postharvest stress-induced accumulation of antioxidant phenolic compounds in carrots. Ph. D. Thesis, Texas A& M University College, USA.

Jacobo-Velázquez, D.A., Martínez-Hernández, G.B., Rodríguez, S.C., Cao, C.M. and Cisneros-Zevallos, L. (2011). Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. Journal of Agricultural and Food Chemistry 59, 6583-6593.

Jacobo-Velázquez, D.A. and Cisneros-Zevallos, L. (2012). An alternative use of horticultural crops: stressed plants as biofactories of bioactive phenolic compounds. Agriculture 2, 259-271.

Kim, D.O. and Lee, C.Y. (2002). Extraction and isolation of polyphenolics. In: Current Protocols in Food Analytical Chemistry, (R.E. Wrolstad, T.E. Acree, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F. Shoemaker, D.M. Smith and P. Sporns, eds.), Pp. I1.2.1-I1.2.12. John Wiley and Sons, Inc., USA.

King, A. and Young, G. (1999). Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association 99, 213- 218.

Llorach, R., Espín, J.C., Tomás-Barberán, F.A. and Ferreres, F. (2002). Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidantphenolics. Journal of Agricultural and Food Chemistry 50, 3458- 3464.

López, A., Rico, M., Rivero, A. and Tangil, M. S. (2011). The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry 125, 1104-1109.

Moglia, A., Lanteri, S., Comino, C., Acquadro, A., Vos, R.D. and Beekwilder, J. (2008). Stressinduced biosynthesis of dicaffeoylquinic acids in globe artichoke. Journal of Agricultural and Food Chemistry 56, 8641-8649.

Moure, A., Cruz, J.M., Franco, D., Domínguez, J.M., Sineiro, J., Domínguez, H., Nuñéz, M.J. and Parajó, J.C. (2001). Natural antioxidants from ´ residual sources. Food Chemistry 72, 145-171.

Munin, A. and Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 2011, 3, 793-829.

Niggeweg, R., Michael, A.J. and Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22, 746-754.

Onofrejová, L., Vasšíčíkova, J., Klejdus, B., Stratil, P., Mišurcová, L, Kráčmar, S., Kopecky, J. and Vacek J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis 51, 464-470.

Paun, G., Neagu, E., Tache, A., Radu, G.L. and Parvulescu, V (2011). Application of the nanofiltration process for concentrationof polyphenolic compounds from Geranium robertianum and Salvia officinalis extracts. Chemical and Biochemical Engineering Quarterly 25, 453-460.

Pérez-Magariño, S., Ortega-Heras, M. and Cano-Mozo, E. (2008). Optimization of a solid-phase extraction method using copolymer sorbents for isolation of phenolic compounds in red wines and quantification by HPLC. Journal of Agricultural and Food Chemistry 56, 11560- 11570.

Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Lamuela-Raventós, R., Buxaderas, S. and Codina, C. (2007). An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry 97, 137-150.

Renaud, S. and De Lorgeril, M. (1992). Wine, alcohol, platelets, and the French Paradox for coronary heart disease. The Lance 339, 1523- 1526.

Reyes, L.F., Villarreal, J.E. and Cisneros-Zevallos, L. (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry 101, 1254- 1262.

Ribeiro, B., Valentão, P., Baptista, P., Seabra, R.M. and Andrade, P.B. (2007). Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology 45, 1805-1813.

Robbins, R.J. (2003). Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry 51, 2866- 2887.

Rommens, C.M., Richael, C.M., Yan, H., Navarre, D.A., Ye, J., Krucker, M. and Swords, K. (2008). Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnology Journal 6, 870-886.

Schieber, A., Stintzing, F.C. and Carle, R. (2001). By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science and Technology 12, 401- 413.

Schouten, H.J., Krens, F.K. and Jacobsen, E. (2006). Cisgenic plants are similar to traditionally bred plants. European Molecular Biology Organization 7, 750-753.

Shahidi, F. (2000). Antioxidants in food and food antioxidants. Nahrung 44, S158-S163.

Tsao, R. and Deng, Z. (2010). Separation procedures for naturally occurring antioxidant phytochemicals. Journal of Chromatography B 812, 85-99.

Tylkowski, B., Trusheva, B., Bankova, V., Giamberini, M., Peeva, G. and Nikolova, A. (2010). Extraction of biologically active compounds from propolis and concentration of extract by nanofiltration. Journal of Membrane Science 348, 124-130.

Verrall, M. S. (1996). Downstream Processing of Natural Products, John Wiley and Sons, U.K.

Xia, E.Q., Deng, G.F., Guo, Y.J. and Li, H.B. (2010). Biological activities of polyphenols from grapes. International Journal of Molecular Sciences 11, 622-646.

Zhang, Y., Jiao, J., Liu, C., Wua, X. and Zhang Y. (2008). Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative highperformance liquid chromatography. Food Chemistry 107, 1326-1336.

Źwir-Ferenc, A. and Biziuk, M. (2006). Solid phase extraction technique - trends, opportunities and applications. Polish Journal of Environmental Studies 15, 677-690.
Published
2020-02-07
How to Cite
Sánchez-Rangel, J., Benavides, J., & Jacobo-Velázquez, D. (2020). ABIOTIC STRESS BASED BIOPROCESSES FOR THE PRODUCTION OF HIGH VALUE ANTIOXIDANT PHENOLIC COMPOUND IN PLANTS: AN OVERVIEW. Revista Mexicana De Ingeniería Química, 13(1), 49-61. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1295
Section
Biotechnology