• P. Aguilar-Zárate Group of Bioprocesses. Program in Food Science and Technology. Departments of Food Research and Chemical Engineering. School of Chemistry. Universidad Autónoma de Coahuila
  • M.A. Cruz-Hernández Department of Food Science and Technology. Universidad Autónoma Agraria Antonio Narro
  • J.C. Montañez Group of Bioprocesses. Program in Food Science and Technology. Departments of Food Research and Chemical Engineering. School of Chemistry. Universidad Autónoma de Coahuila
  • R.E. Belmares-Cerda Group of Bioprocesses. Program in Food Science and Technology. Departments of Food Research and Chemical Engineering. School of Chemistry. Universidad Autónoma de Coahuila
  • C. N. Aguilar Group of Bioprocesses. Program in Food Science and Technology. Departments of Food Research and Chemical Engineering. School of Chemistry. Universidad Autónoma de Coahuila
Keywords: gallotannins, bacterial tannase, tannins biodegradation, optimization, tannase gene


Tannins are polyphenolic compounds present in plants where they play an important role to prevent the attack of viruses, bacteria and fungi. Despite the fact that polyphenols inhibit the microbial growth, adaptation process has allowed developing mechanisms to transform them. One mechanism is the production of tannase, which has been obtained mostly from fungi. In recent years, some tannase producer bacteria have been isolated from different sources, mainly from animals and human intestine and feces as well as from fermented food and fruit wastes. Obtaining high titers of bacterial tannase depends mainly on the culture medium composition, the bacterial strain and the process optimization of culture conditions. This paper presents an overview of the recent investigations regarding the production, the physicochemical and molecular characteristics, the applications and the potential uses of bacterial tannases.


Abdelwahed, A., Bouhlel, I., Skandrani, I., Valenti, K., Kadri, M., Guiraud, P., Steiman, R., Mariotte, A.M., Ghedira, K., Laporte, F., Dijoux-Franca, M.G. and Chekir-Ghedira, L. (2007). Study of antimutagenic and antioxidant activities of Gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus confirmation by microarray expression profiling. Chemico-Biological Interactions 165,1-13.

Aguilar, C.N. and Gutiérrez-Sánchez, G. (2001). Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International 7, 373- 382.

Aguilar, C.N., Rodríguez, R., Gutierrez-Sanchez, G., Augur, C., Favela-Torres, E., Prado-Barragán, L.A., Ramírez-Coronel, A. y Contreras-Esquivel, J.C. (2007). Microbial Tannases: Advances and Perspectives. Applied Microbiology and Biotechnology 76, 47-59

Aguilera-Carbó, A., Augur, C., Prado-Barragán, L.A., Favela-Torres, E. and Aguilar, C.N. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology 78, 189-199.

Aissam, H., Errachidi, F., Penninckx, M.J., Merzouki, M. and Benlemlih, M. (2005). Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste waters. World Journal of Microbiology and Biotechnology 21, 609 - 614.

Albertse, E.H. (2002). Cloning, Expresion and Caracterization of Tannase from Aspergillus species. Tesis magistral. Faculty of Natural and Agricultural Sciences Department of Microbiology and Biochemistry. University of the Free State Bloemfontein South Africa pp. 8-9

Ayed, L. and Hamdi, M. (2002). Culture conditions of tannase production by Lactobacillus plantarum. Biotechnology Letters 24, 1763- 1765

Banerjee, D., Mahapatra, S. and Pati, B.R. (2007). Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Research Journal of Microbiology 2, 462 - 468.

Bellamy, R. and Barhkam, T. (2002). Staphylococcus lugdunensis infection sites: predominance of abscesses in the pelvic girdle region. Clinical Infectious Diseases 35, E32-E34.

Belmares-Cerda, R., Reyes-Veja, M. L., Contreras-Esquivel, J. C., Rodríguez-Herrera, R., and Aguilar, C. N. (2003). Effect of carbon source on tannase production by two strains of Aspergillus niger. Revista Mexicana de Ingeniería Química 2, 95-100.

Belmares, R., Contreras-Esquivel, J.C., Rodríguez-Herrera, R., Ramírez-Coronel, A. and Aguilar, C.N. (2004). Microbial production of tannase: an enzyme with potential use in food industry. Lebensmittel-Wissenschaft Technologie 37, 857- 864

Belur, P.D. and Mugeraya, G. (2011). Microbial production of tannase: state of the art. Research Journal of Microbiology. 6(1):25-40

Belur, P.D., Gopal, M., Nirmala, K.R. and Basavaraj, N. (2010). Production of novel cellassociated tannase from newly isolated Serratia ficaria DTC. Journal of Microbiology and Biotechnology 20, 732-736.

Belur P.D., Goud R. and Goudar D.C. (2012). Optimization of culture medium for novel cell associated tannase production from Bacillus massiliensis using response surface methodology. Journal of Microbiology and Biotechnology 22, 199-206.

Beniwal, V., Chhokar, V., Singh, N. and Sharma, J. (2010). Optimization of process parameters for the production of tannase and gallic acid by Enterobacter cloacae MTCC 9125. Journal of American Science 6, 389-397.

Bhat, T.K., Singh ,B. and Sharma, O.P. (1998). Microbial degradation of tannins-A current perspective. Biodegradation 9, 343-357.

Brune, A. and Schink, B. (1992). Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: Fermentation of trihydroxybenzenes to acetate via triacetic acid. Archives of Microbiology 157, 417-424.

Cavin, J.F., Andioc ,V., Etievant, P.X. and Divies, C. (1993). Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. American Journal of Enology and Viticulture 44, 76-80

Chávez-González, M., Rodríguez-Duran, L.V., Balagurusami, N., Prado-Barragán, A., Rodríguez, R., Contreras, J.C. and Aguilar, C.N. (2011). Biotechnological advances and challenges of tannase: an overview. Food Bioprocess Technology 5, 445-459.

Chuck-Hernández, C., Pérez-Carrillo, E., Heredia-Olea, E. and Serna-Saldívar S. O. (2011). Sorghum as a multifunctional crop for bioethanol production in México: technologies, advances and improvement opportunities. Revista Mexicana de Ingeniería Química 10, 529-549.

Curiel, J.A., Rodríguez, H., Acebrón, I., Mancheño J.M., De Las Rivas, B. and Munoz, R. (2009). Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. Journal of Agricultural and Food Chemistry 57, 6224-6230.

Das Mohapatra, P.K., Maity, C., Rao, R.S., Pati, B.R. and Mondal, K.C. (2009). Tannase production by Bacillus licheniformis KBR6: optimization of submerged culture conditions by Taguchi DOE methodology. Food Research International 42, 430-435

Das Mohapatra, P.K., Mondal, K.C. and Pati, B.R. (2006). Production of tannase throgh submerged fermentation of tannin-containig plant extracts by Bacillus licheniformis KBR6. Polish Journal of Microbiology 55, 297-301

Deschamps, A.M., Otuk, G. and Lebeault, J.M. (1983). Production of tannase and degradation of chestnut tannin by bacteria. Journal of Fermentation Technology 61, 55-59

Dykstra, R.R., Brooker, A.T., Somerville-Roberts, N.P., Miracle, G.S., Lant, N.J., Souter, P.F., Forrest, M. and Ure, C. (2011). A catalytic laundry detergent composition comprising relatively low levels of watersoluble electrolyte. U.S. Patent Application No. 2011/0005003.

Gaime-Perraud, I., Saucedo-Castañeda, G., Augur, C. and Roussos, S. (2000). Adding value to coffee solid by-products through biotechnology. En: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee Biotechnology and Quality. Kluwer Academic Publishers Dordrecht. pp 437-446

Greig, J.M. and Wood, M.J. (2003). Staphylococcus lugdunensis vertebral osteomyelitis. Clinical Microbiology and Infection 9, 1139-1141.

Goel G., Puniya A.K., Aguilar C.N. and Singh K. (2005). Interaction of gut microflora with tannins in feeds. Naturewissenchaften 92, 947- 503.

Guzmán-López, O., Loera, O., Parada, J.L., Castillo-Morales, A., Martínez-Ramírez, C., Augur, C., Gaime-Perraud, I. and Saucedo-Castañeda, G. (2009). Microcultures of lactic acid bacteria: Characterization and selection of strains, optimization of nutrients and gallic acid concentration. Journal of Industrial Microbiology and Biotechnology 36,11-20.

Haslam, E., and Stangroom, J.E. (1966). The esterase and depsidase activities of tannase. The Biochemical Journal 99, 28-31.

Hatamoto, O., Watarai, T., Kikuchi, M., Mizusawa, K. and Sekine, H. (1996). Cloning and sequencing of the gene encoding tannase and structural study of the tannase subunite from Aspergillus orizae. Gene 175, 215-221.

Iwamoto, K., Tsuruta, H., Nishitani, Y. and Osawa, R. (2008). Identification and cloning of a gene encoding tannase (tannin acyl hidrolase) from Lactobacillus plantarum ATCC 14917. Systematic and Applied Microbiology 31, 269- 277.

Jun, C.S., Yoo, M.J., Lee, W.Y., Kwak, K.C., Bae, M.S., Hwang, W.T., Son, D.H. and Chai, K.Y. (2007). Ester derivatives from tannasetreated prunioside A and their anti-inflammatory activities. Bulletin of the Korean Chemical Society 28, 73-76.

Khanbabaee, K. and Van Ree, T. (2001). Tannins: Classification and Definition. Natural Product Reports 18, 641 - 649.

Kumar, R.A., Gunasekaran, P., and Lakshman, M. (1999). Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. Journal of Basic Microbiology 39, 161- 168.

Kumar, R., Sharma, J. and Singh, R. (2007). Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiological Research 162, 384-390.

Lewis, J.A. and Starkey, R.L. (1969). Decomposition of plant tannins by some soil microorganisms. Soil Science 107, 235 - 241.

Milva, P., Lucia, R.L., Roberto, A., Alessandro, E., Guido, P., Monia, R., Arianna, L., Antonio, F., Simone, G. and Silvano, E.F. (2010). Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. International Biodeterioration and Biodegradation 64, 73-80.

Mingshu, L., Kai, Y., Qiang, H. and Dongying, J. (2006). Biodegradation of gallotannins and ellagitannins. Journal of Basic Microbiology 46, 68-84.

Mondal, K.C., Banerjee, R. and Pati, B.R. (2000). Tannase production by Bacillus licheniformis. Biotechnology Letters 22, 767-769.

Mondal, K.C., Banerjee, D., Banerjee, R. and Pati, B.R. (2001). Production and characterization of tannase from Bacillus cereus KBR9. Journal of General and Applied Microbiology 47, 263-267.

Naidu, R.B., Saisubramanian, N., Sivasubramanian S., Selvakumar, D., Janardhan, S., and Puvanakrishnan R. (2008). Optimization of tannase production from Aspergillus foetidus using statistical design methods. Current Trends in Biotechnology and Pharmacy 2, 523-530.

Nelson, K.A., Schofield, P. and Zinder, S. (1995). Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolysable tannins. Applied and Environmental Microbiology 61, 3293-3298.

Nishitani Y., Sasaki E., Fujisawa T. and Osawa R. (2004). Genotypic analyses of Lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Systematic and Applied Microbiology 27, 109-117.

Noguchi, N., Ohashi, T., Shiratori, T., Narui, K., Hagiwara, T., Ko, M., Watanabe, K., Miyahara, T., Taira, S., Moriyasu, F. and Sasatsu, M. (2007). Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. Journal of Gastroenterology 42, 346-351.

Osawa, R., Kuroiso, K., Goto, S. and Shimizu, A. (2000). Isolation of tannin degrading lactobacilli from human and fermented foods. Applied Environmental Microbiology 66, 3093- 3097

Patel, R., Piper, K.E., Rouse, M.S., Uhl, J.R., Cockerill, F.R. and Steckelberg, J.M. (2000). Frequency of isolation of Staphylococcus lugdunensis among staphylococcal isolated causing endocarditis: a 20-year experience. Journal of Clinical Microbiology 38, 4262- 4263.

Pelinescu, D.R., Sasarman, E., Chifiriuc, M.C., Stoica, I., Nohit, A.M., Avram, I., Servancea, F. and Dimov, T.V. (2009). Isolation and identification of son Lactobacillus and Enterococcus strains by a polyphasic taxonomical approach. Romanian Biotechnology Letters 14, 4225-4233

Raghuwanshi, S., Dutt, K., Gupta, P., Misra, S. and Saxena, R.K. (2011). Bacillus sphaericus: The highest bacterial tannase producer with potential for gallic acid synthesis. Journal of Bioscience and Bioengineering 111, 635-640

Ramírez-Coronel, A., Marnet, N., Kumar, V., Rousses, S., Guyot, S. and Augur, C. (2004). Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea Arabica) by thilysis-high performance liquid chromatography. Journal of Agricultural and Food Chemistry 52, 1344-1349

Rodríguez, H., Curiel, J.A., de las Rivas, B., Gómez-Cordovés, C., Mancheño, J.M. and Muñoz, R. (2011). The tannase of Lactobacillus plantarum. En: Chemistry and Biotechnology of Poliphenols. CiBET Publishers, Kerala, India. 152-166 pp.

Rodríguez, H., de las Rivas, B., Gomez-Cordovés, C. and Muñoz, R. (2008). Characteriztaion of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748. International Journal of Food Microbiology 121, 92-98.

Rodríguez, T.H.S., Pinto, G.A.S. and Gonçalves, L.R.B. (2008). Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnology and Bioprocess Engineering 13, 571-576.

Rout, S. and Banerjee, R. (2006). Production of tannase under mSSF and its application in fruit juice debittering. Indian Journal of Biotechnology 5, 351 - 356.

Sabu, A., Augur, C., Swati, C. and Pandey, A. (2006). Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochemistry 41, 575-580

Selwal, M.K., Yadav, A., Selwal, K.K., Aggarwal, N.K., Gupta, R. and Gautam, S.K. (2010). Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World Journal of Microbiology and Biotechnology 26, 599-605

Smith, A.H., Zoetendal, E. and Mackie, R.I. (2005). Bacterial mechanism to overcome inhibitory effects of dietary tanins. Microbial Ecology 50, 197-205

Taguchi, G. (1986). Introduction to Quality Engineering. UNIPUB Kraus International Publications, White Plains, New York.

Tejirian, A. and Xu, F. (2011). Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme and Microbial Technology 48, 239-247.

Treviño, L., Contreras-Esquivel, J., Rodriguez-Herrera, R. and Aguilar, C. (2007). Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture. Journal of Zhejiang University Science B 8, 771-776

Vaquero, I., Marcobal, A. and Muñoz, R. (2004). Tannase activity by lactic acid bacteria isolated from grape must and wine. International Journal of Food Microbiology 96, 199-204.

Weinberg, Z.G., Muco, R.E., Weimer, P.J., Chen, Y. and Gamburg, M. (2004). Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Applied Biochemistry and Biotechnology 118, 1-10.

Yu, X.W. and Li, Y.Q. (2008). Expression of Aspergillus oryzae tannase in Pichia pastoris and its application in the synthesis of propyl gallate in organic solvent. Food Technology and Biotechnology 46, 80 - 85.
How to Cite
Aguilar-Zárate, P., Cruz-Hernández, M., Montañez, J., Belmares-Cerda, R., & Aguilar, C. N. (2020). BACTERIAL TANNASES: PRODUCTION, PROPERTIES AND APPLICATIONS. Revista Mexicana De Ingeniería Química, 13(1), 63-74. Retrieved from