• D.Y. Morales-Delgado
  • D.I. Téllez-Medina Departamento de Graduados e Investigación en Alimentos. Escuela Nacional de Ciencias Biológicas-IPN
  • N. L. Rivero-Ramírez Departamento de Morfología. Escuela Nacional de Ciencias Biológicas-IPN
  • S. Arellano-Cárdenas Departamento de Biofísica. Escuela Nacional de Ciencias Biológicas-IPN
  • S. López-Cortez Departamento de Biofísica. Escuela Nacional de Ciencias Biológicas-IPN
  • H. Hernández-Sánchez Departamento de Graduados e Investigación en Alimentos. Escuela Nacional de Ciencias Biológicas-IPN
  • G. Gutiérrez-López Departamento de Graduados e Investigación en Alimentos. Escuela Nacional de Ciencias Biológicas-IPN
  • M. Cornejo-Mazón Departamento de Biofísica. Escuela Nacional de Ciencias Biológicas-IPN
Keywords: strawberries, convective drying and morphological parameters, total anthocyanin content, antioxidant capacity


The effect of convective drying of strawberries (Fragaria x ananassa Dutch) on the contents of anthocyanins (AcyTot) and antioxidant capacity (TEAC), as equivalents of Trolox, was evaluated as well as its relation to cell morphological changes in the mesocarp by means of determining the variations in Area (A), Perimeter (P), Feret Diameter (Fe) and Fractal Dimension of parenchymal tissue cells. A decrease in anthocyanin content caused by drying at 60, 70 80 and 90 ◦C and 1 m/s airflow was observed. ACyTot and TEAC showed correlation (r = 0.784). The decrease in ACyTot and TEAC in samples dehydrated at 60 ◦C, was associated to the decrease in values of A, P, Fe and FD found in samples dried at this temperature whereas no changes in A, P and Fe were found in samples dried at 70-90 ◦C in relation to those observed at 60 ◦C. The cell contour resulted smoother after high-temperature drying, as indicated by the decrease in FD. The antioxidant activity related to changes in ACyTot and TEAC took place at progressively higher levels in samples that changed morphology in the same proportion among each other.


Abdel-Aal, E. S. M. y Huel, P. (1999). A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chemistry 76, 350-354.

Alonzo-Macías, M., Cardador-Martínez, A., Mounir, S., Montejano-Gaitán, G., Allaf, K. (2013). Comparative Study of the Effects of Drying Methods on Antioxidant Activity of Dried Strawberry (Fragaria Var. Camarosa). Journal of Food Research 2, 92-107.

Alvarado-González, J.S., Chanona-Pérez J.J., Welti-Chanes J. S., Calderón-Domínguez G., Arzate-Vázquez I., Pacheco-Alcalá S. U., Garibay-Febles V., Gutiérrez-López G. F. (2012). Propiedades ópticas, microestructurales, funcionales y nanomécanicas de películas comestibles de gel de Aloe vera/goma gelano. Revista Mexicana de Ingeniería Química 11, 193-210.

AOAC (1993) AOAC Methods and determination of moisture. The AOAC Referee 17, 5-9. Official Methods of Analysis of AOAC International, 15th Ed. Arlington Virginia: Association of Official Analytical Chemists International.

Barletta, H.J. and Barbosa, O.G.V. (1993). Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science 58, 1030-1035.

Basu, A., Xu F.D., Wilkinson, M., Simmons B., Wu M., Betts M., Du M. y Lyons J.T. (2010). Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutrition Research 30, 462-469.

Brennan, J. G. (2011). Evaporation and Dehydration. In: Food Processing Handbook, (J. G. Brennan and A. S. Grandison, eds.), Pp. 281-329. WileyVCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Bridle, P., and García-Viguera, C. (1997). Analysis of anthocyanin in strawberry and elderberries. A comparison of capillary zone electrophoresis and HPLC. Food Chemistry 59, 299-304.

Campos-Mendiola, R.; Hernández-Sánchez, H., Chanona-Pérez, J.J., Jiménez-Aparicio, A., Fito, P. and Gutiérrez-López, G.F. (2007). ´ Non isotropic shrinkage and interfaces during convective drying of potato slabs within the frame of the systematic approach to food engineering systems (SAFES) methodology. Journal of Food Engineering 83, 285-292.

Cardenas-Sandoval, B.A., López-Laredo, A.R., Martínez Bonfil, B.P., Bermúdez-Torre, K. y Trejo-Tapia, G. 2012. Advances in the phitochemistry of Cuphea aequipetala, c. Aequipetala var. Hispida and c. Lanceolata: extraction and quantification of phenolic compounds and antioxidant activity. Revista Mexicana de Ingeniería Química 11, 401-413.

Cerezo, A. B., Cuevas, E., Winterhalter, P., García, P. and Troncoso, A. M. (2010). Isolation, Identification and antioxidant activity of anthocyanin compounds in Camarosa Strawberry. Food Chemistry 123, 574-582.

Chanona, J. J., Alamilla, L., Farrera, R. R., Quevedo, R., Aguilera, J. M. and Gutierrez, G. F. (2003). Description of the convective air-drying of a food model by means of the fractal theory. Food Science and Technology International 9, 207- 213.

Civello, P. M., Martinez, G. A. Chaves, A. R. and Añon, M.C. (1997). Heat-treatments delay ripening and postharvest decay of strawberry fruit. Journal of Agricultural and Food Chemistry 12, 4589-4594.

Contreras, C., Esparza, M.E., Chiralt, A. and Navarrete, N. M. (2008). Influence of microwave application of convective drying; Effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering 88, 55-64.

Cordenunsi, B. R., Nascimento, J.R.O. and Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry 83, 167-173.

Domínguez-Fernández, R.N., Arzate-Vázquez, I., Chanona-Pérez, J.J., Welti-Chanes, J.S., Alvarado-González, J.S., Calderón-Domínguez, G., Garibay-Febles, V. and Gutiérrez-López, G.F. (2012). El gel de Aloe vera: estructura, composición química, procesamiento, actividad biológica e importancia en la industria farmacéutica y alimentaria. Revista Mexicana de Ingeniería Química 11, 23-43.

Doymaz, I. (2008). Convective drying kinetics of strawberry. Chemical Engineering and Processing 47, 914-919.

Gumeta-Chávez, C. (2009). Estudio del secado convectivo y de la extracción de celulosa a través del proceso organosolv a partir de Agave atrovirens Karw. Tesis de Doctorado. Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, México D.F.

Howard, L. R., Braswell, D. D. and Aselage, J. (1996). Chemical composition and color of strained carrots as affected by processing. Journal of Food Science 6, 327-330.

Hung, P. V. and Duy, T. L. (2012). Effects of drying methods on bioactive compounds of vegetables and correlation between bioactive compounds and their antioxidants. International Food Research Journal 19, 327-332.

Karperien, A. (2004). “FracLac Advanced User’s Manual, version 2.5”, http://rsb.info.nih.gov /ij/plugins/fraclac/FLHelp. Accessed: 3 December 2013.

Kwok, B. H. L., Hu, C., Durance, T. and Kitts, D. D. (2004). Dehydratation techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt.). Journal of Food Science 69, 122-126.

Lohachoompol, V., Srzednicki, G. and Craske, J (2004). The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. Journal of Biomedical Biotechnology 2004, 248-252.

Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. W. H. Freeman and Company. NY, USA.

Mori, K., Goto-Yamamoto, N. and Kitayama, H. K. (2007). Loss of anthocyanins in redwine grape under high temperature. Journal of Experimental Botany 58, 1935-45.

NMX-FF-062-1987. Fruta fresca. Fresa (Fragaria vesca). Especificaciones.

Seeram, P. N., Lee, R., Scheuller, S. H. and Heber, D. (2005). Identification of fhenolic compounds in strawberry by liquid chromatography electro spray ionization mass spectroscopy. Food Chemistry 97, 1-11.

Tapia-Ochoategui, A.P., Camacho-Díaz, B.H., PereaFlores, M.J., Ordóñez-Ruíz, I.M.,. Gutiérrez-López G.F. and Dávila-Ortiz, G. (2011). Morfometric changes during the traditional curing process of vanilla pods (vanilla planifolia; orchidaceae) in Mexico. Revista Mexicana de Ingeniería Química 10, 105-115.

Wang, S. Y. and Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agriculture and Food Chemistry 48, 140-146.

Wang, S. Y., Zheng, W. and Galletta, G. J. (2002). Cultural system affects quality and antioxidant capacity in strawberries. Journal of Agriculture and Food Chemistry 50, 6534-6542.

Wojdylo, A., Figiel, A. and Oszmianski, J. (2009). ´ Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. Journal of Agriculture and Food Chemistry 57, 1337-1343.
How to Cite
Morales-Delgado, D., Téllez-Medina, D., Rivero-Ramírez, N. L., Arellano-Cárdenas, S., López-Cortez, S., Hernández-Sánchez, H., Gutiérrez-López, G., & Cornejo-Mazón, M. (2020). EFFECT OF CONVECTIVE DRYING ON TOTAL ANTHOCYANIN CONTENT, ANTIOXIDANT ACTIVITY AND CELL MORPHOMETRIC PARAMETERS OF STRAWBERRY PARENCHYMAL TISSUE (Fragaria x ananassa Dutch). Revista Mexicana De Ingeniería Química, 13(1), 179-187. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1310
Food Engineering