MORPHOMETRIC PARAMETERS, ZETA POTENTIAL AND GROWTH RATE OF Lactobacillus casei Shirota BY EFFECT OF DIFFERENT BILE SALTS

  • R. González-Vázquez Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • G.F. Gutiérrez-López Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • S. Arellano-Cárdenas Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • E.O. López-Villegas Departamento de Investigación, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • D. I. Téllez-Medina Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • Y. Rivera-Espinoza Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
Keywords: Lactobacillus casei Shirota, growth rate, bile salts, morphometric parameters, bile salt hydrolase activity, zeta potential

Abstract

Effects of primary and secondary bile salts, conjugated to glycine [glycocholic (GCA) and glycodeoxycholic acid (GDCA)], taurine [taurocholic acid (TCA), taurodeoxycholic acid (TDCA)] on morphometry and growth rate of Lactobacillus casei Shirota were studied. Images obtained by scanning electron microscopy showed modification (p < 0.05) in cell minor axis and aspect ratio. The former was modified by GCA while the second by all the bile salts used. The growth rate (µ) values were: 1.95, 0.66, 0.32, 1.89 and 1.86 h−1 in MRS medium without salts and with GCA, GDCA, TCA and TDCA, respectively. Estimated doubling time was: 0.35, 0.36 and 0.37 h for MRS medium without salts, and with TCA and TDCA, respectively. For GCA and GDCA, a decrease in growth was observed from 4 h and 2 h of incubation, respectively. Bile salt hydrolase activity was determined qualitatively and quantitatively. L. casei Shirota showed activity on taurine-conjugated bile salts. The zeta potential was determined by using the same conditions as those for quantification of bile salt hydrolase activity and different potentials for each dispersion system were found; the zeta potential values were related to the metabolism of L. casei Shirota.

References

Begley, M., Gahan, C.G. and Hill, C. (2005). The interaction between bacteria and bile. FEMS Microbiology Reviews 29, 625-51.

Begley, M., Hill, C. and Gahan, C.G. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology 72, 1729-38.

Brashears, M.M., Gilliland, S.E. and Buck, L.M. (1998). Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Journal of Dairy Science 81, 2103-10.

Chanona-Pérez, J., Quevedo, R., Jiménez Aparicio A.R., Gumeta Chávez, C., Mendoza Pérez, J.A., Calderón Domínguez, G., Alamilla-Beltrán, L. and Gutiérrez-López, G.F. (2008). Image processing methods and fractal analysis for quantitative evaluation of size, shape, structure and microstructure in food materials. In: Food Engineering: Integrated Approaches, (G.F. Gutiérrez-López, G.V. Barbosa-Cánovas, J. Welti-Chanes and E. Parada-Arias eds.), Pp. 277-278. Springer, New York.

Coeuret, V., Gueguen, M. and Vernoux, J.P. (2004). Numbers and strains of lactobacilli in some probiotic products. International Journal of Food Microbiology 97, 147-156.

Cogan, T.M., Beresford, T.P., Steele, J., Broadbent, J., Shah, N.P. and Ustunol Z. (2007). Invited review: Advances in starter cultures and cultured foods. Journal of Dairy Science 90, 4005-21.

Corzo, G. and Gilliland, S.E. (1999a). Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. Journal of Dairy Science 82, 472-80.

Corzo, G. and Gilliland, S.E. (1999b). Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. Journal of Dairy Science 82, 466-71.

Dashkevicz, M.P. and Feighner, S.D. (1989). Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Applied Environmental Microbiology 55, 11-16.

De Smet, I., Van Hoorde, L., Vande Woestyne, M., Christiaens, H. and Verstraete, W. (1995). Significance of bile salt hydrolytic activities of lactobacilli. Journal of Applied Bacteriology 79, 292-301.

De Smet, I., De Boever, P. and Verstraete, W. (1998). Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. British Journal of Nutrition 79, 185-94.

Doherty, S.B., Gee, V.L., Ross, R.P., Stanton, C., Fitzgerald, G.F. and Brodkorb, A. (2011). Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloids 25, 1604-1617.

Dunne, C., Murphy, L., Flynn, S., O´Mahony, L., O´Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C. and Kiely, B. (1999). Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek, 76, 279-292.

Ejtahed, H.S., Mohtadi.Nia, J., Homayouni-Rad, A., Niafar, M., Asghari-Jafarabadi, M., Mofid, V. and Akbarian-Moghari, A. (2011). Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. Journal of Dairy Science 94, 3288-94.

Fernández Murga, M.L., Font de Valdez, G. and Disalvo, A. E. (2000). Changes in the Surface Potential of Lactobacillus acidophilus under Freeze-Thawing Stress. Cryobiology 41, 10-6.

Figueroa-González, I., Hernández-Sánchez, H., Rodríguez-Serrano, G., Gomez-Ruiz, L., García-Garibay, M., Cruz-Guerrero, A. (2010) Antimicrobial effect of Lactobacillus casei strain Shirota co-cultivated with Escherichia coli UAM0403. Revista Mexicana de Ingeniería Química 9, 11-16.

Gilliland, S.E., Staley, T.E. and Bush, L.J. (1984). Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of Dairy Science 67, 3045-51.

Gomez Zavaglia, A., Tymczyszyn, E., De Antoni, G. and Disalvo A.E. (2003). Action of trehalose on the preservation of Lactobacillus Delbrueckii Ssp. Bulgaricus by heat and osmotic dehydration. Journal of Applied Microbiology 95, 1315-1320.

González-Olivares, L.G., Jiménez-Guzmán, J., Cruz- Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruíz, L. and García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista Mexicana de Ingeniería Química 10, 179-188.

Granato, D., Branco, G.F., Nazzaro, F., Cruz, A.D. and Faria, J.A.F. (2010). Functional foods and nondairy probiotic food development: Trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety 9, 292-302.

Guo, C.F., Zhang, L.W., Han, X., Li, J.Y., Du, M., Yi, H.X., Feng, Z., Zhang, Y.C. and Xu, S.R. (2011). A sensitive method for qualitative screening of bile salt hydrolase-active lactobacilli based on thin-layer chromatography. Journal of Dairy Science 94, 1732-1737.

Guo, Z., Wang, J., Yan, L., Chen, W., Liu, X. and Zhang, H. (2009). In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. LWT-Food Science and Technology 42, 1640-1646.

Kim, Y., Whang, J.Y., Whang, K.Y., Oh, S. and Kim, S.H. (2008). Characterisation of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Bioscience Biotechnology Biochemistry 72, 1483-90.

Klaenhammer, T.R. and Martin J. Kullen. (1999). Selection and Design of Probiotics. International Journal of Food Microbiology 50, 45-57.

Lim, H.J., Kim, S.Y. and Lee, W.K. (2004). Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use. Journal of Veterinary Science 5, 391-5.

Liong, M.T. and Shah, N.P. (2005). Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. International Dairy Journal 15, 391-398.

Lundeen, S.G. and Savage, D.C. (1990). Characterisation and purification of bile salt hydrolase from Lactobacillus sp. strain 100- 100. Journal of Bacteriology 172, 4171-7.

Moser, S.A. and D.C. Savage. (2001). Bile Salt Hydrolase Activity and Resistance to Toxicity of Conjugated Bile Salts Are Unrelated Properties in Lactobacilli. Applied and Environmental Microbiology 67, 3476-80.

Ohashi, Y., Umesaki, Y. and Ushida, K. (2004). Transition of the probiotic bacteria, Lactobacillus casei strain Shirota, in the gastrointestinal tract of a pig. International Journal of Food Microbiology 96, 61-6.

Patel, A.K., Singhania, R.R., Pandey, A. and Chincholkar, S.B. (2010). Probiotic bile salt hydrolase: current developments and perspectives. Applied Biochemistry and Biotechnology 162, 166-80.

Paw, D., Ross, T., Kamperman, L., Neumeyer, K. and McMeekin T.A. (1994). Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology 23, 391-404.

Rodríguez-Huezo, M.E., Lobato-Calleros, C., Reyes-Ocampo, J.G., Sandoval-Castilla, O., Pérez-Alonso, C. and Pimentel-Gonzalez, D.J. (2011). Survivability of entrapped Lactobacillus Rhamnosus in liquid- and gel-core alginate beads during storage and simulated gastrointestinal conditions. Revista Mexicana de Ingeniería Química 10, 353-361.

Schar-Zammaretti, P., Dillmann, M. L., N. D’Amico, N., Affolter, M. and Ubbink, J. (2005) Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Applied Environmental Microbiology 71, 8165-73.

Schillinger, U., Guigas, C. and Holzapfel, W.H. (2005). In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. International Dairy Journal 15, 1289- 1297.

Shimada, K., Bricknell, K. S. and Finegold, S. M. (1969). Deconjugation of bile acids by intestinal bacteria: review of literature and additional studies. The Journal of Infectious Diseases 119, 273-81.

Sooresh, A., Zeng, Z., Chandrasekharan, J., Pillai, S.D. and Sayes, C. M. (2012). A physiologically relevant approach to characterize the microbial response to colloidal particles in food matrices within a simulated gastrointestinal tract. Food and Chemical Toxicology 50, 2971-7.

Šušković, J., Kos, B., Matosic, S. and Besendorfer, V. (2000). The effect of bile salts on survival and morphology of a potential probiotic strain Lactobacillus acidophilus M92. World Journal of Microbiology and Biotechnology 16, 673- 678.

Tanaka, H., Doesburg, K., Iwasaki, T. and Mierau, I. (1999). Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of Dairy Science 82, 2530-5.

Taranto, M.P., Sesma, F. and Font de Valdez, G. (1999). Localization and primary characterisation of bile salt hydrolase from Lactobacillus reuteri. Biotechnology Letters 21, 935-938.

Villa-García, M., Pedroza-Islas, R., San Martin-Martínez, E. and Aguilar-Frutis, M. (2013). Impedance spectroscopy: an efficient and fast method to probe the growing of Lactobacillus acidophilus. Revista Mexicana de Ingeniería Química 12, 57-64.
Published
2020-02-10
How to Cite
González-Vázquez, R., Gutiérrez-López, G., Arellano-Cárdenas, S., López-Villegas, E., Téllez-Medina, D. I., & Rivera-Espinoza, Y. (2020). MORPHOMETRIC PARAMETERS, ZETA POTENTIAL AND GROWTH RATE OF Lactobacillus casei Shirota BY EFFECT OF DIFFERENT BILE SALTS. Revista Mexicana De Ingeniería Química, 13(1), 189-199. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1311
Section
Food Engineering

Most read articles by the same author(s)