• J.M. Rodríguez-Bernal Facultad de Ingeniería, Universidad de la Sabana
  • J. A. Serna-Jiménez Facultad de Ingeniería, Universidad de la Sabana
  • M.A. Uribe-Bohórquez Facultad de Ingeniería, Universidad de la Sabana
  • B. Klotz Instituto Alpina de Investigación, Alpina Corporativo S.A.
  • M. X. Quintanilla-Carvajal Facultad de Ingeniería, Universidad de la Sabana
Keywords: starters, yogurt, optimization, maximum acidification rate, maximum growth rate


In this work, the concentration of two commercials starters (YO-MIXT M (L) 204 and YOFLEX® (Y)) and sugar percentage (5, 7.5 and 10%) were evaluated by optimization response surface methodology (ORSM), in order to identify the higher acidification rate. The starters growth was followed during the acidification process. The results showed that optimal acidification conditions for L were at the lowest value of sugar and the highest value of the starter concentration. In the case of Y the optimal acidification conditions were with the highest starter concentration but at medium sugar levels. Total acidification times were 4.4 and 4.2 hours, respectively. The growth rate for each starter culture was determined by nonlinear regression resulting lower growth rates for streptococcus (0.705 h−1 for L and 0.367 h−1 for Y) than for lactobacillus (0.733 h−1 for L and 0.389 h−1 for Y) in each starter. Finally, significant differences were found in the time necessary to reach the maximum acidification rate for starter cultures evaluated at the same concentration of sugar. This kind of studies should continue because it offers the possibility of growth in the dairy sector by standardizing production processes.


Adamberg, K., Kask, S., Laht, T.M., Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pHauxostat study. International Journal of Food Microbiology, 85, 171-83.

Alimentos I. (2010). Revista de Alimentos. Aumenta el mercado del yogurt en el mundo. Disponible en: Aumenta-el-mercado-del-yogurt-en-. Accesado: 28 de Octubre de 2012.

Ascon-Reyes, D.B., Ascon-Cabrera, M.A., Cochet N., y Lebeault, J.M. (1995). Indirect conductance for measurements of carbon dioxide produced by Streptococcus salivarius subsp. thermophiles TJ 160 in pure and mixed cultures. Journal of Dairy Science 78, 8-6.

Baranyi, J. y Roberts, T. (1995). Mathematics of predictive food microbiology. International Journal of Food Microbiology 26, 199-218.

Beal, C., Skokanova, J., Latrille, E., Martin, N., y Corrieu, G. (1999). Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science 82, 673-681.

Beletsiotis, E., Ghikas, D. y Kalantzi, K. (2011). Incorporation of microbiological and molecular methods in HACCP monitoring scheme of molds and yeasts in a Greek dairy plant: A case study. Procedia Food Science 1, 1051-1059.

Boza, Y., Barbin, D., Scamparini, A. R. P. (2004). Effect of spraydrying on the quality of encapsulated cells of Beijerinckia sp. Process Biochemistry 39, 1275-284.

CODEX. (2010). Norma CODEX para leches fermentadas. CODEX Stan 243-2003.

Corona-González, R.I., Ramos-Ibarra, J.R., Gutiérrez-González, P., Pelayo-Ortiz, C., Guatemala-Morales, G.M. y Arriola-Guevara, E. (2013). The use of response surface methodology to evaluate the fermentation conditions in the production of Tepache. Revista Mexicana de Ingeniería Química 12, 19-28.

Davis, J., Ashton, T. y McCaskil, M. (1971). Enumeration and viability of Lactobacillus bulgaricus and Streptococcus thermophiles in yogurt. Dairy Industries 36, 569 - 573.

De Brabandere, A. G. y De Baerdemaeker, G. J. (1999). Effects of process conditions on the pH development during yogurt fermentation. Journal of Food Engineering 41, 221-227.

Díaz-Jiménez, B., Sosa-Morales, M. E. y Vélez-Ruiz, J. F. (2004). Efecto de la adición de fibra y la disminución de grasa en las propiedades fisicoquímicas del yogur. Revista Mexicana de Ingeniería Química 3, 287-305.

Fox, P.F. (1989). En: The milk protein system. Developments in Dairy Chemistry. Functional Milk Proteins. Applied Science 4, 1-53.

Gougouli, M., Kalantzi, K., Beletsiotis, E. y Koutsoumanis, K. P. (2011). Development and application of predictive models for fungal growth as tools to improve quality control yogurt production. Food Microbiology 28, 1453-462.

Hardie, J. M. (1986). Genus Streptoccus. En: Bergey’s Manual of Systematic Bacteriology, Vol 2, Williams & Wilkins, Baltimore, 1043- 070.

Hernández-Díaz, W.N., Hernández-Campos, F. J., Vargas-Galarze, Z., Rodríguez-Jiménez, G.C. y García-Alvarado, M.A. (2013). Coffee Grain Rotary Drying Optimization. Revista Mexicana de Ingeniería Química 12, 315-325.

Higashio, K., Yoshioka, Y., y Kikuchi, T. (1977). Journal of Agricultural Chemical Society of Japan, 51, 209.

Hui, Y. H., Lisbeth Meunier-Goddik, Jytte Josephsen, Wai-Kit Nip, y Peggy S. Stanfield. (2003). Handbook of Food and Beverage Fermentation Technology. Taylor & Francis.

Hutkins, R.W. y Morris, H.A. (1987). Carbohydrate metabolism by Streptococcus thermophilus: a review. Journal of Food Protection 50, 876 - 884.

Kandler, O. y Weiss, N.(1986). Genus Lactobacillus. En: Bergey’s Manual of Systematic Bacteriology, Vol 2, Williams & Wilkins, Baltimore, 209-234.

Kristo, E., Biliaderis, C. y Tzanetakis, N. (2003). Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology. Food Chemistry 83, 437-446.

Law, Barry A. y Tamime, A. Y. (2010). Technology of cheesemaking. Editorial Wiley-BlackWell, Londres.

Little, T. M. y Hills, F. J. (1978). Agricultural Experimentation Design and Analysis. Editorial John Wiley and Sons, New York, Estados Unidos.

Marth, E. y Steele, J. (2001). Applied Dairy Microbiology. Editorial CRC Press.

Martínez Castillo, F. A., Balciunasa, E. M., Salgado, J.M., Domínguez, J.M., Convertic, A. y Oliveira, R.P. (2013). Lactic acid properties, applications and production: A review. Food Science and Technology 30, 70 - 83.

Martinussen, J., Solem, C., Holm, A. K. y Jensen, P. R. (2013). Engineering strategies aimed at control of acidification rate of lactic acid bacteria. Current Opinion in Biotechnology 24, 124-129.

Oner, M.D., Erickson, L.E. y Yang, S.S. (1986). Analysis of exponential growth data for yoghurt cultures. Biotechnology and Bioengineering 28, 895-901.

Poolman, B., Royer, T.J., Mainzer, S.E. y Schmidt, B.F. (1989). Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvatedependent phosphotransferase systems. Journal of Bacteriology 171, 244 - 253.

Ramírez-Sucre, Manuel Octavia y Vélez-Ruíz, Jorge Fernando. (2013). Physicochemical, rheological and stability characterization of a caramel flavored yogurt. Food Science and Technology 51, 233 - 241.

Rao, K. J., Kim, C.-H. y Rhee, S.-K. (2000). Statistical optimization of medium for the production of combinant hirudin for Saccharomyces cereviasiae using response surface methodology. Process Biochemistry 35, 639 - 647.

Ray, B., Jezeski, J. J. y Busta, F. F. (1971). Repair of injury in freeze-dried Salmonella anatuml. Applied Microbiology 22, 401 - 407.

Rosso, J., Lobry, J.R., Bajard, S. y Flandrois, J.P. (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Applied and Environmental Microbiology 61, 610 - 616.

Schnürer, J. y Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology 16, 70-78.

Sun-Waterhouse, D., Zhou, J., & Wadhwa, S. S. (2013). Drinking yoghurts with berry polyphenols added before and after fermentation. Food Control 32, 450-460.

Tamillow, K. (2012). América Económia. El boom del consumo de yogurt en Latinoamerica. Disponible en: ´ Accesado: 12 de Julio de 2013.

Tamime, A. Y. (2006). Probiotic dairy products. Oxford, UK: Blackwell Publication.

Tamime, A. Y. y Robinson, R.K. (2000). Yoghurt. Science and Technology (Segunda Edicion). ´ CRC Press, Cambridge.

Tamime, A. Y. y Robinson, R. K . (1985). Yoghurt. Science and Technology (Primera Edicion). ´ Pergamon, Press, Oxford.

Tsaousi, K., Dimitrellou, D. y Koutinas, A. A. (2008). Low-temperature thermal drying of Saccharomyces cerevisiae starter culture for food production. Food Chemistry 110, 547-553.

Téllez-Mora, P., Peraza-Luna, F. A., Feria-Velasco, A. y Andrade-González, I. (2012). Optimización del proceso de fermentación para la producción de tequila, utilizando la metodología de superficie de respuesta (MSR). Revista Mexicana de Ingeniería Química 11, 163 - 176.

Thomas, T.D. y Crow, V.L. (1983). Lactose and sucrose utilization by Streptococcus thermophilus. FEMS Microbiology Letters 17, 13 - 17.

Torriani, S., Gardini, F., Guerzoni, M. E. y Dellaglio, F. (1996). Use of Response Surface Methodology to Evaluate some Variables Affecting the Growth and Acidification Characteristics of Yoghurt Cultures. International Dairy Journal 6, 625 - 636.

Walstra, P., Wouters, J. T.M. y Geurts, T. J. (2006). Dairy Science and Technology (Segunda Edición). Estados Unidos: Taylor & Francis Group.

Zare, F., Champagne, C. P., Simpson, B. K., Orsat, V. y Boye, J. I. (2012). Effect of the addition of pulse ingredients to milk on acid production by probiotic and yoghurt starter cultures. LWT - Food Science and Technology 45, 155 - 160.

Zhang, Y. y Vadlani, P. (2013). D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess and Biosystems, 1 - 8.

Zourari, A., Accolas, J.P. y Desmazeaud, M. J. (1992). Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72, 1 - 34.
How to Cite
Rodríguez-Bernal, J., Serna-Jiménez, J. A., Uribe-Bohórquez, M., Klotz, B., & Quintanilla-Carvajal, M. X. (2020). APPLICATION OF RESPONSE SURFACE METHODOLOGY TO EVALUATE THE EFFECT OF THE CONCENTRATION OF SUGAR AND COMMERCIALS STARTERS ON THE FERMENTATION KINETICS OF YOGURT. Revista Mexicana De Ingeniería Química, 13(1), 213-225. Retrieved from
Food Engineering