UPSCALED MODEL FOR DISPERSIVE MASS TRANSFER IN A TUBULAR POROUS MEMBRANE SEPARATOR

  • F.J. Valdés-Parada Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa
  • J.A. Ochoa-Tapia Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa
  • E. Salinas-Rodríguez Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa
  • S. Gómez-Torres Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa
  • M.G. Hernández Departamento de Ciencias Básicas, Área de FAMA, Universidad Autónoma Metropolitana-Azcapotzalco
Keywords: mass transfer, tubular membrane separator, oxygen transfer, non-equilibrium model, upscaling

Abstract

In this work, the steady-state mass transfer of a non-reactive species in a tubular separator involving a porous membrane is studied. This type of equipment has received considerable attention in the literature since it can be used for gas-gas separation processes. In specific, in this work we are interested in studying transport of oxygen from an air current to a pure helium flow. The air is transported in the annular region, whereas the helium is flowing in countercurrent within the inner compartment of the system. The membrane is permeable to gases in different proportions; however, only oxygen is assumed to constitute a dilute solution in both regions of the system. To derive the mathematical model, we averaged the pointwise equations in the system cross-section generating a system of two ordinary differential equations representing non-equilibrium mass transfer in each region of the system. These upscaled equations are written in terms of effective-medium coefficients that capture the essential features from the pointwise transport and are predicted from the solution of the associated closure problem. To evaluate the predictive capabilities of the model, we compared the concentration profiles with those from solving the pointwise equations. The influence of the membrane permeability to oxygen transfer is studied and we found a close correspondence between the pointwise and upscaled models.

References

Abdel-Jawad M.M., Gopalakrishnan S., Duke M.C., Macrossan M.N., Smith Schneider P., Diniz da Costa J.C. (2007). Flow fields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes. Journal of Membrane Science 299, 229-235.

Bowen T.C., Noble R.D., Falconer J.L. (2004). Fundamentals and applications of pervaporation through zeolite membranes. Journal of Membrane Science 245, 1-33.

Bird R.B., Stewart W.E., Lightfoot E.N. (2007). Transport Phenomena, second edition, Wiley.

Chandesris M. and Jamet D. (2007). Boundary conditions at a fluid-porous interface: An a priori estimation of the stress jump coefficients. International Journal of Heat and Mass Transfer 50, 3422-3436.

Coronas J., Santamaría J. (1999). Catalytic reactors based on porous ceramic membranes. Catalysis Today 51, 377-389.

Cushman J. (1997). The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Springer.

Faucheux V., Audier M., Rapenne L., Pignard S. (2008). Fabrication of thin and dense nanocrystalline membranes on porous substrates. Journal of Materials Processing Technology 204, 248-254.

Freeman B., Yampolskii Y., Pinnau I. (2008). Materials Science of Membranes for Gas and Vapor Separation, Wiley.

Gascon J., Kapteijn F., Zornoza B., Sebastian´ V., Casado C., Coronas J. (2012). Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chemistry of Materials 24, 2829-2844.

Gray W.G. (1975). A derivation of the equations for multiphase transport. Chemical Engineering Science 30, 229-233.

Hernández M.G., Salinas-Rodríguez E., Gómez S., Roa-Neri J.A.E., Rodríguez R.F. (2012). Membranas zeolíticas y sus principales aplicaciones. Materiales Avanzados 18, 9-18.

Hussain A., Seidel-Morgenstern A., Tsotsas E. (2006). Heat and mass transfer in tubular ceramic membranes for membrane reactors. International Journal of Heat and Mass Transfer 49, 2239-2253.

Jiang Q., Faraji S., Slade D.A., Stagg-Williams S.M. (2011). Chapter 11 - A Review of Mixed Ionic and Electronic Conducting Ceramic Membranes as Oxygen Sources for High-Temperature Reactors, In: S. Ted Oyama and Susan M. Stagg-Williams, Editor(s), Membrane Science and Technology, Elsevier, Volume 14, Pages 235-273.

Kumar V.S., Hariharan K.S., Mayya K.S., Han S. (2013). Volume averaged reduced order Donnan Steric Pore Model for nanofiltration membranes. Desalination 322, 21-28.

Li S., Jin W., Huang P., Xu N., Shi J., Lin Y.S. (2000). Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science 166, 51-61.

Liang F., Jiang H., Schiestel T., Caro J. (2010). High-purity oxygen production from air using Perovskite hollow fiber membranes. Industrial and Engineering Chemistry Research 49, 9377- 9384.

McLeary E.E., Jansen J.C., Kapteijn F. (2006). Zeolite based films, membranes and membrane reactors: Progress and prospects. Microporous and Mesoporous Materials 90, 198-220.

Rebollar-Perez G., Carretier E., Moulin P. (2010). Aplicaciones de la permeacion de vapor: El tratamiento de compuestos orgánicos volátiles de origen antropogénico. Revista Mexicana de Ingeniería Química 9, 67-77.

Taylor G.I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 219, 186-203.

Taylor G.I. (1954). Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 225, 473-477.

Wang H., Cong Y., Yang W. (2003). Investigation on the partial oxidation of methane to syngas in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3 − δ membrane reactor. Catalysis Today 82, 157-166.

Wang H., Wang R., Tee Liang D., Yang W. (2004). Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF) tubular membranes for air separation. Journal of Membrane Science 243, 405-415.

Whitaker S. (1999). The Method of Volume Averaging, Kluwer academic publishers.

Whitaker S. (2009). Chemical engineering education: making connections at interfaces. Revista Mexicana de Ingeniería Química 8, 1-33.

Wood B.D. (2009). Taylor-Aris dispersion: An explicit example for understanding multiscale analysis via volume averaging. Chemical Engineering Education 43, 29-38.

Wood B.D., Váldes-Parada F.J. (2013). Volume averaging: Local and nonlocal closures using a Green’s function approach. Advances in Water Resources 51, 139-167.

Zhu X., Sun S., He Y., Cong Y., Yang W. (2008). New concept on air separation. Journal of Membrane Science 323, 221-224.
Published
2020-02-10
How to Cite
Valdés-Parada, F., Ochoa-Tapia, J., Salinas-Rodríguez, E., Gómez-Torres, S., & Hernández, M. (2020). UPSCALED MODEL FOR DISPERSIVE MASS TRANSFER IN A TUBULAR POROUS MEMBRANE SEPARATOR. Revista Mexicana De Ingeniería Química, 13(1), 237-257. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1316
Section
Transport phenomena