• S. Ventura-Cruz Centro Interamericano de Recursos del Agua- Facultad de Ingeniería Universidad Autónoma del Estado de México
  • C. Fall Centro Interamericano de Recursos del Agua- Facultad de Ingeniería Universidad Autónoma del Estado de México
  • M. Esparza-Soto Centro Interamericano de Recursos del Agua- Facultad de Ingeniería Universidad Autónoma del Estado de México
Keywords: nitrification, dissolved organic matter, nitrifying reactor, fluorescence spectrometry, excitation-emission matrix


The fluorescence spectroscopy is an analytical tool used to test water from different origins because it is sensitive, selective and can give a broad spectrum of information on the composition, characteristics, origin and distribution of dissolved organic matter (DOM). The objective of this research was to characterize the effluent DOM of an aerobic autotrophic nitrifying reactor with fluorescence spectrometry of the excitation-emission matrix in 3D (EEM-3D) and determine if ·EEM-3D could identify soluble microbial products from nitrifying bacteria. The nitrifying reactor was operated at a sludge retention time of 36 days, a hydraulic retention time of 40 hours of hydraulic retention time and fed with an excess of ammonium. Only two fluorescence peaks were identified in the reactor effluent: The peaks were located at similar emission wavelength (416.9 ± 10.3 and 415.5 ± 2.2 nm, respectively), but different excitation wavelength (245.2 ± 1.0 and 330.7 ± 1.7 nm, respectively). The EEM-3D were significantly different than those found in the effluent of aerobic and anaerobic reactors.


Alberts, J. J. y Takács, M. (2004). Comparison of the natural fluorescence distribution among size fractions of terrestrial fulvic and humic acids and aquatic natural organic matter. Organic Geochemistry 35, 1141-1149.

Bae, W., Baek, S., Chang, J. y Lee, Y. (2002). Optimal operational factors for nitrite accumulation in batch reactor. Biodegradation 12, 359-366.

Baker, A. (2001). Fluorescence excitation-emission matrix characterization of some sewageimpacted rivers. Environmental Science and Technology 35, 948-953.

Baker, A. y Genty, D. (1999). Fluorescence wavelength and intensity variations of cave waters. Journal of Hydrology 217, 19-39.

Barker, J. y Stuckey, C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research 33, 3063- 3082.

Bernet, N., Dangcong, P., Delgenés, P. J. y Moletta, R. (2001). Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering 127, 266-271.

Bougard, D., Bernet, N., Cheneby, D. y Delgenes, J. P. (2006). Nitrification of a high-strength wastewater in an inverse turbulent bed reactor. Effect of temperature on nitrite accumulation. Process Biochemistry 41, 106-113.

Campos, J., Garrido, M. J., Corral-Mosquera, A. y Méndez, R. (2007). Stability of a nitrifying activated sludge reactor. Biochemical Engineering Journal 36, 87-92.

Carrera, J., Baeza, A. J., Vicent, T. y La Fuente, J. (2003). Biological nitrogen removal of highstrength ammonium industrial wastewater with two-sludge system. Water Research 37, 4211- 4221.

Chen, W., Westerhoff, P., Leenheer, J. A. y Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science Technology 37, 5701-5710.

Coble, P. G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51, 325-346.

Esparza-Soto, D. (2009). Programa Migración para la exportación automática de datos generados por el software Winlab a hojas de cálculo de Excel.

Esparza-Soto, M. y Westerhoff, P. K. (2001). Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass. Water Science and Technology 43, 87-95.

Esparza-Soto, M., Hernández-Núñez, S. y Fall, C. (2011). Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times. Water Research 45, 6555-6563.

Espinosa-Rodríguez, M. A., Flores-Álamo, N., Esparza-Soto, M. y Fall, C. (2012). Efecto de la temperatura en la tasa de crecimiento y decaimiento heterotrófico en el rango de 20-32 °C en un proceso de lodos activados. Revista Mexicana de Ingeniería Química 11, 309-321.

Gerardi, M. (2002). Nitrification and denitrification in the activated sludge process. WileyInterscience. Nueva York. Estados Unidos.

Ichihashi, O., Satoh, H. y Mino, T. (2006). Effect of soluble microbial products on microbial metabolisms related to nutrient removal. Water Research 40, 1627-2826.

Janhom, T., Wattanachira, S. y Pavasant, P. (2009). Characterization of brewery wastewater with spectrofluorometry analysis. Environmental Management 90, 1184-1190.

Jarusutthirak, C. y Amy, G. (2007). Understanding soluble microbial products (SMP) as component of effluent organic matter (EFOM). Water Research 41, 2787-2793.

Laspidou, C. S. y Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass. Water Research 36, 2711-2720.

Li, W. H., Sheng, G. P., Liu, X. W. y Yu, H. Q. (2008). Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Research 42, 3173-3181.

Mahvi, A. H., Mesdaghinia, A. R. y Karakani, F. (2004). Nitrogen removal from wastewater in a continuous flow sequencing batch reactor. Pakistan Journal of Biological Sciences 7, 1880- 1883.

Mopper, K., Feng, M. Z., Bentjen, B. S. y Chen, F. R. (1996). Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Marine Chemistry 55, 53-74.

Muñoz-Sánchez, T. J. y Reyes-Mazzoco, R. (2012). Organic matter and nitrogen removal capacity of a new parking for trickling filters. Revista Mexicana de Ingeniería Química 11, 279-286.

Ni, B. J., Rittmann, B. E., Fang, F., Xu, J. y Yu, H. Q. (2010). Long-term formation of microbial products in a sequencing batch reactor. Water Research 44, 3787-3796.

Ross, N., Deschénes, L., Bureau, J., Clément, B., Comeau, Y. y Samson, R. (1998).

Ecotoxicological Assessment and effects of physicochemical factors on biofilm development in groundwater conditions. Environmental Science Technology 32, 1105- 1111.

Saadi, I., Borisover, M., Armon, R. y Laor, Y. (2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere 63, 530- 539.

Sheng, G. P. y Yu, H. Q. (2006). Characterization of extracelular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research 40, 1233-1239.

Stedmon, C. A., Markager, S. y Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82, 239-254.

Wu, C., Peng, Y., Wang, S., Li, X. y Wang, R. (2011). Effect of Sludge Retention Time on Nitrite Accumulation in Real-time Control Biological Nitrogen Removal Sequencing Batch Reactor. Biotechnology and Bioengineering 19, 512-517.

Xie, W. M., Ni, B. J., Seviour, T., Sheng, G. P. y Yu, H. Q. (2012). Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge. Water Research 46, 6210-6217.

Xie, W. M., Ni, B. J., Zeng, R. J., Sheng, G. P., Yu, H. Q., Song, J., Le, D. Z., Bi, X. J., Liu, C. Q. y Yang, M. (2010). Formation of soluble microbial products by activated sludge under anoxic conditions. Environmental Biotechnology 87, 373-382.
How to Cite
Ventura-Cruz, S., Fall, C., & Esparza-Soto, M. (2020). CHARACTERIZATION OF ORGANIC MATTER IN THE EFFLUENT FROM A NITRIFYING REACTOR USING FLUORESCENCE SPECTROSCOPY. Revista Mexicana De Ingeniería Química, 13(1), 279-289. Retrieved from
Environmental Engineering