PERFORMANCE OF A MODIFIED EXTRUDER FOR POLYESTER FIBER PRODUCTION USING RECYCLED PET

  • J.C. Tapia-Picazo 1Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Aguascalientes
  • A. García-Chávez 1Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Aguascalientes
  • R. Gonzalez-Nuñez Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Ingeniería Química, Universidad de Guadalajara
  • A. Bonilla-Petriciolet 1Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Aguascalientes
  • G. Luna-Bárcenas Cinvestav-Querétaro
  • A. Champión-Coria División de Estudios de Postgrado e Investigación, Departamento de Ingeniería Química y Bioquímica, Departamento de Electromecánica y Departamento de Ciencias Básicas, Instituto Tecnológico de Zacatepec
  • A. Alvarez-Castillo División de Estudios de Postgrado e Investigación, Departamento de Ingeniería Química y Bioquímica, Departamento de Electromecánica y Departamento de Ciencias Básicas, Instituto Tecnológico de Zacatepec
Keywords: recycled PET, extrusion process, spinning process, polyester fiber

Abstract

In this study, we report the design and results of the operation of a modified extrusion equipment with spinning fiber devices. The performance of the equipment has been evaluated by producing polyester fibers from different recycled poly(ethylene terephthalate) (PET) of pharma- and bottle-grade. Flow performance along the extruder length was modeled and the pressure was calculated at standard conditions and considering a flow change of +10% in these standard conditions. The variation of drop pressure inside the extruder was modeled as a function of the Inherent Viscosity (IV) and humidity content (X). In addition, losses of IV were calculated in the temperature range from 290 to 300 °C for different initial PET Viscosity index (IV0). We report the variation of mass flow as a function of pressure applied to the extruder at different temperature for PET recycled of pharma- and bottle-grade. The proposed model for analyzing the mass flow showed a good agreement with the experimental data showing a mean error < 3 %.

References

Abbasi, M. Mojtahedi, M.R.M. Khosroshahi, A. (2007). Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles. Journal of Applied Polymer Science 103, 3972-3975

Abu-Isa, I. A., Jaynes, C. B., O’Gara, J. F. (1996). High-impact-strength poly(ethylene terephthalate) (PET) from virgin and recycled resins. Journal of Applied Polymer Science 59, 1957-1971

Cata, A. Bandur, G. Balcu, I. Buzatu, D. Tanasie, C. Rosu, D. (2007). Preliminary Studies about PET Degradation. Rheological Determinations on Glycolysis Products Obtained with Propylene Glycol. Chem. Bull. ”POLITEHNICA” Univ. (Timi?oara) 52, 143-146

Dale, R. G. (2000). Improving Properties and Processing Performance of Melt-Spun Fibers. International Nonwovens Journal 9, 15-21

Daw-Ming, F. Huang, S. K., Jiunn-Yih, L. (1996). Kinetics and thermal crystallinity of recycled PET. II. Topographic study on thermal crystallinity of the injection-molded recycled PET. Journal of Applied Polymer Science 61, 261-271

Elarmi A., Lallam A., Harzallah O., Bencheikh L., (2007). Mechanical Characterization of melt spun fibers from recycled and virgin PET Blends. Journal of Materials Science 42, 8271- 8278 Franceschini, G. Macchietto, S. (2007). Validation of a Model for Biodiesel Production through Model-Based Experiment Design. Industrial Engineering Chemical Research 46, 220-232

García, A. (2008). Desarrollo de un nuevo proceso de reciclado de botellas de PET para la producción de fibra poliéster. M. Sc. Thesis on Chemical Engineering, Instituto Tecnológico de Aguascalientes, MEXICO.

Gurudatt K., De P., Rakshit A. K., Bardhan M. K., Bardhan K., (2005). Dope-dyed Polyester Fibers from Recycled PET Wastes for Use in Molded Automotive Carpets. Journal of Industrial Textiles 34, 167-179.

Gurudatt, K. Rakshit, P. De A. K. Bardhan, M. K. (2003). Spinning fibers from poly(ethylene terephthalate) bottle-grade waste. Journal of Applied Polymer Science 90, 3536?3545

Incarnato, L. Scarfato, P. Di Maio, L. Acierno, D. (2000). Structure and rheology of recycled PET modified by reactive extrusion. Polymer 41, 6825-6831

La Mantia, F. Vinci, M. (1994). Recycling poly(ethyleneterephthalate). Polymer Degradation and Stability 45, 121-125

Litchfield D. W., (2008). The Manufacture and Mechanical Properties of Poly(ethylene terephthalate) Fibers filled with Organically Modified Montmorillonite. Ph. D. thesis on Chemical Engineering, Virginia Polytechnic Institute, USA.

Lyons, J. Li, C. Ko, F. (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597-7603

Martin, J. Rojas, M. (2005). Instalación de extrusión de PET reciclado y utilización correspondiente. Oficina Española De Patentes Y Marcas (OEPM), Number of publication 2226512.

Miller, C. (2007). Poly(ethyleneterephthalate): poly(ethyleneterephthalate) has helped shrink he size of the waste stream. Waste age 51.

Oromiehie, A. Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International 53, 728-732.

Pirzadeh, E. Zadhoush, A. Haghighat, M. (2007). Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity. Journal of Applied Polymer Science 106, 1544- 1549

Rajabinejad, H. Khajavi, R. Rashidi, A. Mansouri, N. Yazdanshenas, M. E. (2009). Recycling of Used Bottle Grade Poly Ethyleneterephthalate to Nanofibers by Melt-electrospinning Method. International Journal of Environmental Research 3, 663-670.

Saeid Hosseini, S. Taheri, S. Zadhoush, A. Mehrabani-Zeinabad, A. (2007). Hydrolytic degradation of poly(ethylene terephthalate). Journal of Applied Polymer Science 103, 2304- 2309

Saha, B. and Ghoshal, A. K. (2005). Thermal degradation kinetics of poly(ethylene terephthalate) from waste soft drinks bottles. Chemical Engineering Journal 111, 39-43

Samperi F., C. Puglisi, R. Alicata and G. Montaudo (2004). Polymer Degradation and Stability 83.

Seo, K.S. Cloyd, J. D. (1991). Kinetics of hydrolysis and thermal degradation of polyester melts. Journal of Applied Polymer Science 42, 845- 850.

Tapia-Picazo J.C., Garcia-Chavez A., Gonzalez-Nuñez R., Bonilla-Petriciolet A., Luna-Bárcenas G., Alvarez-Castillo A., Polyester ´ fiber production made of virgin and recycled PET by using a modified process, submitted to Fibers and Polymers.

Torres, N., Robin, J.J. Boutevin, B. (2000). Study of thermal and mechanical properties of virgin and recycled poly(ethylene terephthalate) before and after injection molding. European Polymer Journal 36, 2075-2080.
Published
2020-02-11
How to Cite
Tapia-Picazo, J., García-Chávez, A., Gonzalez-Nuñez, R., Bonilla-Petriciolet, A., Luna-Bárcenas, G., Champión-Coria, A., & Alvarez-Castillo, A. (2020). PERFORMANCE OF A MODIFIED EXTRUDER FOR POLYESTER FIBER PRODUCTION USING RECYCLED PET. Revista Mexicana De Ingeniería Química, 13(1), 337-344. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1322