Predicting the thermal conductivity of composites based on high density polyethylene-cold plasma modified graphite by application of several analytical micromechanical models

  • G. Soria-Arguello
  • M.G. Neira-Velázquez
  • L.F. Ramos de Valle
  • J.J. Borjas-Ramos
Keywords: Plasma polymerization, Agari’s predictive model, Thermal conductivity composites


The experimental data of the thermal conductivity of high density polyethylene composites filled with as-received and modified graphite particles by ethylene plasma polymerization were compared with the theoretical values obtained after applying the following micromechanical analytical models: the series model, the Maxwell model, as well as the Nielsen and the Agari models. The experimental thermal conductivity of the composites was determined by Modulated Differential Scanning Calorimetry. The theoretical results of each model adjusted to a greater or lesser extent to the experimentally obtained data. However, the Agari’s model was the one that most closely approximates the experimental values while the series model is the one with the least precision.


1. Abdel Ghafaar, M., Mazen, A. A., & El-Mahallawy, N. A. (2006). Application of the Rule of Mixtures and Halpin-Tsai Equations to Woven Fabric Reinforced Epoxy Composites. Journal of Engineering Sciences, Assiut University, 34(1), 227–236. Retrieved from
2. Agari, Y., Ueda, A., & Nagai, S. (1993). Thermal conductivity of a polymer composite. Journal of Applied Polymer Science, 49(9), 1625–1634.
3. Agari, Y., & Uno, T. (1986). Estimation on thermal conductivities of filled polymers. Journal of Applied Polymer Science, 32(7), 5705–5712.
4. Bigg, D. M. (1986). Thermally conductive polymer compositions. Polymer Composites, 7(3), 125–140.
5. Bigg, D. M. (1995). Thermal conductivity of heterophase polymer compositions. Advances in Polymer Science, 119.
6. Cernuschi, F., Ahmaniemi, S., Vuoristo, P., & Mäntylä, T. (2004). Modelling of thermal conductivity of porous materials: Application to thick thermal barrier coatings. Journal of the European Ceramic Society, 24(9), 2657–2667.
7. Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., … Chen, B. (2015). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41–85.
8. Chen, L., Sun, Y. Y., Xu, H. F., He, S. J., Wei, G. S., Du, X. Z., & Lin, J. (2016). Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Composites Science and Technology, 122, 42–49.
9. E1952-11., A. (2017). Standard Test Method for Thermal Conductivityand Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. ASTM International, 7.
10. Gutsol, A. (2010). Warm Discharges for Fuel Conversion. In A. A. M. Lackner, F. Winter (Ed.), Handbook of Combustion (1st ed., p. 30). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
11. Krupa, I., & Chodak, I. (2001). Physical properties of thermoplastic/graphite composites. European Polymer Journal, 37(11), 2159–2168.
12. Lin, F., Bhatia, G. S., & Ford, J. D. (1993). Thermal conductivities of powder‐filled epoxy resins. Journal of Applied Polymer Science, 49(11), 1901–1908.
13. Maxwell, J. C. (1954). A Treatise on Electricity & Magnetism - Volume 1. Dover Publications, INC , New York. New York: Dover Publications; Edición: 3rd ed. Retrieved from
14. Nielsen, L. E., & Landel, R. F. (1993). Mechanical properties of polymers and composites, second edition, revised and expanded. Mechanical Properties of Polymers and Composites, Second Edition, Revised and Expanded.
15. Pietrak, K., & Wiśniewski, T. (2015). A review of models for effective thermal conductivity of composite materials. Journal of Power of Technologies, 95(1), 14–24.
16. Progelhof, R. C., Throne, J. L., & Ruetsch, R. R. (1976). Methods for predicting the thermal conductivity of composite systems: A review. Polymer Engineering & Science, 16(9), 615–625.
17. Ramos-de Valle, L. F., Neira-Velázquez, M. G., Borjas-Ramos, J. J., Moggio, I., Arias, E., Gallardo-Vega, C. A., … Narro-Céspedes, R. I. (2019). Thermal conductivity of high density polyethylene: Cold plasma modified graphite composites. Polymer Composites, (October 2018), 1–10.
18. Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., & Golberg, D. (2010). Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. The Journal of Physical Chemistry C, 114(10), 4340–4344.
19. Voshchinnikov, N. V, Videen, G., & Henning, T. (2007). Effective medium theories for irregular fluffy structures: Aggregation of small particles. In Applied Optics (Vol. 46, pp. 4065–4072).
20. Weber, E. H., Clingerman, M. L., & King, J. A. (2003). Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. Journal of Applied Polymer Science, 88(1), 123–130.
21. Wunderlich Bernhard. (1976). Macromolecular Physics II. New York: Academic Press, Inc.
22. Zendejo-Covarrubias, R., Narro-Cespedes, R. I., Neira-Velazquez, G., Cruz-Delgado, V. J., Ku-Herrera, J. J., Borjas-Ramos, J., … Soria-Arguello, G. (2018). Surface Modification of Graphene Nanoparticles with Ethylene Plasma in Rotary Plasma Reactor for the Preparation of GnP/HDPE Nanocomposites. IEEE Transactions on Plasma Science, 46(7).
How to Cite
Soria-Arguello, G., Neira-Velázquez, M., Ramos de Valle, L., & Borjas-Ramos, J. (2020). Predicting the thermal conductivity of composites based on high density polyethylene-cold plasma modified graphite by application of several analytical micromechanical models. Revista Mexicana De Ingeniería Química, 19(3), 1505-1514.

Most read articles by the same author(s)