Acidogenesis/methanogenesis from acid cheese whey in hybrid-UASB reactors

  • K.N. Cárdenas-Medina
  • M.C. Fajardo-Ortiz
  • B.S. Schettino-Bermúdez
  • M.A. Meraz-Rodríguez
  • P. Castilla-Hernández
Keywords: Acid cheese whey, Acidogenesis/methanogenesis, Hybrid-UASB reactor, industrial effluents, nutrients

Abstract

The cheese industry produces residues, such as acid cheese whey; this by-product has a high organic-matter concentration and other nutrients that are severe environmental contaminants. The aim of this study was to evaluate the acidogenesis/methanogenesis of acid cheese whey with short Hydraulic Retention Times (HRT) in Hybrid-UASB reactors, following the organic matter, ammonia, and orthophosphate evolution. The acidogenic reactor was operated at HRT of 0.5 days, while for the methanogenic reactor, ranged from 1‒2 days; both reactors were operated in series. Results show that the overall HRT of 1.5 days allowed optimal removal (89‒96.8%) with organic loading rates between 2.5 and 10.7 g COD/L-d, while at 14.2‒24.9 g COD/L-d best results were found at 2.5 days of overall HRT. Highest methane productivity ranged from 0.99‒1.15 LCH4/LReactor-d (0.238‒0.308 LCH4/g CODdegraded). Ammonia formation was only significant in methanogenesis (85 mg/L), while orthophosphates showed no change throughout all the process. In conclusion Hybrid-UASB reactors operated at short HRT were suitable for the acidogenesis/methanogenesis of this wastewater. Furthermore, methane can be used for energy generation, and ammonia and orthophosphate might be employed for the development of high value-added products.

References

American Public Health Association/American Water Works Association/Water Environment Federation (Eds.), (2005). Standard Methods for the Examination of Water and Wastewater. 21th edition, Washington DC, USA.
Badem, A. and Uçar, G. (2017). Production of caseins and their usages. International Journal of Food Science and Nutrition 2, 04-09.
Calero, R., Iglesias-Iglesias, R., Kennes, C. and Veiga, M.C. (2018b). Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors. Environmental Technology 39, 3046-3054. https://doi.org/10.1080/09593330.2017.1371796
Calero, R.R., Lagoa-Costa, B., Fernandez-Feal, M.M.C., Kennes, C. and Veiga, M.C. (2018a). Volatile fatty acids production from cheese whey: influence of pH, solid retention time and organic loading rate. Journal of Chemical Technology & Biotechnology 93,1742-1747. https://doi.org/10.1002/jctb.5549
Carvalho, F., Prazeres, A, and Rivas, J. (2013). Cheese whey wastewater: Characterization and treatment. Science of the Total Environment 445‒446, 385-396. http://dx.doi.org/10.1016/j.scitotenv.2012.12.038
Castilla-Hernández, P., Cárdenas-Medina, K., Hernández-Fydrych, V., Fajardo-Ortiz, C. and Meraz-Rodríguez, M. (2016). Compost leachates treatment in a two-phase acidogenic-methanogenic system for biofuels production. Revista Mexicana de Ingeniería Química 15, 175-183.
Chatzipaschali, A.A. and Stamatis, G.A. (2012). Biotechnological utilization with a focus on anaerobic treatment of cheese whey: Current status and prospects. Energies 5, 3492-3525. doi:10.3390/en5093492
Cohen, A., Gemert, J.M.V., Zoetemeyer, R.J. and Breure, A.M. (1984). Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters. Process Biochemistry 19, 282-286
Demirel, B. and Yenigun, O. (2004). Anaerobic acidogenesis of dairy wastewater: the effects of variations in hydraulic retention time with no pH control. Journal of Chemical Technology & Biotechnology 79, 755-760. doi: 10.1002/jctb.1052
Demirel, B. and Yenigün, O. (2002). Two-phase anaerobic digestion processes: a review. Journal of Chemical Technology & Biotechnology 77, 743-755. doi: 10.1002/jctb.630
Diamantis, V.I., Kapagiannidis, G.A., Ntougias, S., Tataki, V., Melidis, P. and Aivasidis, A. (2014). Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochemical Engineering Journal 84, 45-52. http://dx.doi.org/10.1016/j.bej.2014.01.001
Escalante, H., Castro, L., Amaya, M.P., Jaimes, L. and Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management 71, 711-718. doi: 10.1016/j.wasman.2017.09.026
Gannoun, H., Khelifi, E., Bouallagui, H., Touhami, Y. and Hamdi, M. (2008). Ecological clarification cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresource Technology 99, 6105-6111. doi:10.1016/j.biortech.2007.12.037
Gelegenis, J., Georgakakis, D., Angelidaki, I. and Mavris, V. (2007). Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable Energy 32, 2147-2160. doi:10.1016/j.renene.2006.11.015
Göblös, Sz., Portörő, P., Bordás, D., Kálmán, M. and Kiss, I. (2008). Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment. Renewable Energy 33, 960-965. doi:10.1016/j.renene.2007.06.006
González-Siso, M.I. (1996). The biotechnological utilization of cheese whey: a review. Bioresource Technology 57, 1-11.
Guardia, P.Y., Rodríguez, P.S., Cuscó, V.Y., Jiménez, H.J. and Sánchez G.V. (2014). Two-phase anaerobic digestion of coffee wet wastewater: Effect of recycle on anaerobic process performance. Revista Ciencias Técnicas Agropecuarias 23, 25-31.
Jo, Y., Kim, J. and Lee, C. (2016). Continuous treatment of dairy effluent in a downflow anaerobic filter packed with slag grains: Reactor performance and kinetics. Journal of the Taiwan Institute of Chemical Engineers 68,147-152. http://dx.doi.org/10.1016/j.jtice.2016.08.021
Kalyuzhnyi, S.V., Perez, M.E. and Rodriguez, M.J. (1997). Anaerobic treatment of high-strength cheese whey wastewaters in laboratory and pilot UASB-reactors. Bioresource Technology 60, 59-65.
Kavacik, B. and Topaloglu, B. (2010). Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass and Bioenergy 34, 1321-1329. doi:10.1016/j.biombioe.2010.04.006
Mockaitis, G., Ratusznei, S.M., Rodrigues, A.D.J., Zaiat, M. and Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management 79,198-206. doi:10.1016/j.jenvman.2005.07.001
Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I. and de la la Rubia, M.A. (2012). Application of natural zeolites in anaerobic digestion processes: A review. Applied Clay Science 58, 125-133. doi:10.1016/j.clay.2012.01.013
O’Flaherty, V., Collins, G. and Mahony, T. (2006). The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Reviews in Environmental Science and Bio/Technology 5, 39-55. doi: 10.1007/s11157-005-5478-8
Poméon, T., Boucher, F., Cervantes, F. and Fournier, S. (2006). The collective dynamics in two Mexican milk basins: Tlaxco, Tlaxcala and Tizayuca, Hidalgo (In Spanish). Agroalimentaria 12, 49-64.
Rajesh, B.J., Kaliappan, S. and Yeom, I.T. (2007). Two-stage anaerobic treatment of dairy wastewater using HUASB with PUF and PVC carrier. Biotechnology and Bioprocess Engineering 12, 257-264.
Ryan, P.M. and Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Bio/Technology 15, 479-498. doi: 10.1007/s11157-016-9402-1
Saddoud, A., Hassaïri, I. and Sayadi, S. (2007). Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresource Technology 98, 2102-2108. doi:10.1016/j.biortech.2006.08.013
Sánchez-Cárdenas, N.G., Castilla-Hernández, P., Olguín-Palacios, E.J. and Rodríguez-Palacio, M.C. (2017). Coelastrella sp., an option for treatment of dairy effluents. Presentation. 3-6 December. Tlaxcala Mexico: IV International Meeting on Biotechnology at The UATx. (In Spanish).
Shivayogimath, C.B., and Ramanujam, T.K. (1999). Treatment of distillery spentwash by hybrid UASB reactor. Bioprocess Engineering 21, 255-259.
Spirito, C.M., Richter, H., Rabaey, K., Stams, A.J. and Angenent, L.T. (2014). Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Current Opinion in Biotechnology 27, 115-22.
Stolzenburg, P., Capdevielle, A., Teychené, S. and Biscans, B. (2015). Struvite precipitation with MgO as aprecursor: Application to wastewater treatment. Chemical Engineering Science 133, 9-15. http://dx.doi.org/10.1016/j.ces.2015.03.008
Sunil, K.G., Gupta, S.K. and Singh, G. (2007). Biodegradation of distillery spent wash in anaerobic hybrid reactor. Water Research 41, 721-730. doi:10.1016/j.watres.2006.11.039
Valdez-Vazquez, I. and Poggi-Varaldo, H.M. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews 13, 1000-1013. https://doi.org/10.1016/j.rser.2008.03.003
Valencia, D.E. and Ramírez, C.M.L. (2009). The milk industry and water pollution (In Spanish). Elementos 73, 27–31.
Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M. and Lyberatos, G. (2009). Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresource Technology 100, 3713-3717. doi:10.1016/j.biortech.2009.01.025
Venkata-Mohan, S., Lalit-Babu, V., and Sarma, P.N. (2008). Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresource Technology 99, 59-67. doi:10.1016/j.biortech.2006.12.004
Wang, Y., Zhang, Y., Wang, J. and Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy 33, 848-853. doi:10.1016/j.biombioe.2009.01.007
Yu, H. and Fang, H. (2002). Acidogenesis of dairy wastewater at various pH levels. Water Science and Technology 45, 201-206.
Published
2020-07-21
How to Cite
Cárdenas-Medina, K., Fajardo-Ortiz, M., Schettino-Bermúdez, B., Meraz-Rodríguez, M., & Castilla-Hernández, P. (2020). Acidogenesis/methanogenesis from acid cheese whey in hybrid-UASB reactors. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 17-27. https://doi.org/10.24275/rmiq/IA1420
Section
Environmental Engineering

Most read articles by the same author(s)