Growth kinetic model, antioxidant and hypoglycemic effects at different temperatures of potential probiotic Lactobacillus spp

Keywords: Halotolerant Lactobacillus, Growth kinetics, U-Gompertz model, antioxidant activity, hypoglycemic activity

Abstract

The effect of fermentation temperature (32, 37 and 42 °C) on the growth and in vitro antioxidant and hypoglycemic activity of Lactobacillus plantarum, L. pentosus and L. acidipiscis isolated from Chiapas cheese previously characterized as potential probiotics, were evaluated in the present research. The Unified-Gompertz method was used to model the bacterial growth of the strains (R>0.987). Similar biomass production was obtained at the end of 32 °C and 37°C. The maximum absolute growth rate was 0.526 h-1 for L. acidipiscis at 37°C. The antioxidant activity resulted maximum in DPPH at 32°C and 14 h in L. pentosus (7402.62 ± 318.52 μM Trolox/mL) and in ABTS at 32 °C and 24 h in L. acidipiscis (1612.94 ± 56.71 μM Trolox/mL).The inhibition of α-amylase (%) and α-glucosidase (%) resulted maximum at 37 °C and 24 h for L. acidipiscis (97.084 ± 0.752 and 99.756 ± 0.104, respectively). These results concluded that the three strains could be considered mesophilic and with antioxidant and hypoglycemic activity. Moreover, L. acidipiscis gave the best results in all the experiments done. So, more research should be done with this strain to better stablish its potential health benefits

Author Biography

A. Andrade-Velasques

Undergraduate student.

 

References

Adamberg, K., Kask, S., Laht, T.-M., and Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology, 85(1), 171–183. http://doi.org/10.1016/s0168-1605(02)00537-8.
Ahmed, T., Kanwal, R., and Ayub, N. (2006). Influence of temperature on growth pattern of Lactococcus lactis, Streptococcus cremoris and Lactobacillus acidophilus isolated from camel milk. Biotechnology, 5(4), 481-486. http://doi.org/10.3923/biotech.2006.481.488.
Aini, N., Prihananto, V., Wijonarko, G., Astuti, Y., and Maulina, M. R. (2017). Quality deterioration and shelf life estimation of corn yogurt was packaged by glass bottle. Advanced Science Letters, 23(6), 5796-5798. http://doi.org/10.1166/asl.2017.8835.
Álvarez, M. M., Aguirre-Ezkauriatza, E. J., Ramírez-Medrano, A., and Rodríguez-Sánchez, Á. (2010). Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey. Journal of Dairy Science, 93(12), 5552–5560. http://doi.org/10.3168/jds.2010-3116.
Asteri, I.-A., Robertson, N., Kagkli, D.-M., Andrewes, P., Nychas, G., Coolbear, T., … Tsakalidou, E. (2009). Technological and flavour potential of cultures isolated from traditional Greek cheeses – A pool of novel species and starters. International Dairy Journal, 19(10), 595–604. http://doi.org/10.1016/j.idairyj.2009.04.006.
Ayyash, M., Al-Nuaimi, A. K., Al-Mahadin, S., and Liu, S.-Q. (2018). In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chemistry, 239, 588–597. http://doi.org/10.1016/j.foodchem.2017.06.149.
Barãoa, C. E., Klososkia, S. J., Pinheiroa, K. H., Marcolinoa, V. A., Juniorb, O. V., da Cruzc, A. G., ... and Pimentela, T. C. (2019). Growth Kinetics of Kefir Biomass: Influence of the Incubation Temperature in Milk. Chemical Engineering, 75, 499-504. http://doi.org/10.3303/CET1975084.
Behera, S. S., Ray, R. C., and Zdolec, N. (2018). Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. BioMed Research International, 2018, 9361614. v 10.1155/2018/9361614.
Cabral, G. J., Valencia, G. A., Carciofi, B. A. M., and Monteiro, A. R. (2019). Modelling microbial growth in Minas Frescal cheese under modified atmosphere packaging. Journal of Food Processing and Preservation, 43(8), e14024. http://doi.org/10.1111/jfpp.14024.
De Silvestri, A., Ferrari, E., Gozzi, S., Marchi, F., and Foschino, R. (2018). Determination of Temperature-Dependent Growth Parameters in Psychrotrophic Pathogen Bacteria and Tentative Use of Mean Kinetic Temperature for the Microbiological Control of Food. Frontiers in Microbiology. 9, 3023. http://doi.org/10.3389/fmicb.2018.03023.
Demers-Mathieu, V., Audy, J., Laurin, É., Fliss, I., and St-Gelais, D. (2015). Impact of commercial mesophilic and thermophilic starters on the growth of new probiotic isolates. International Dairy Journal, 45, 31–40. DOI: 10.1016/j.idairyj.2015.01.014.
Demir, N., Bahçeci, K. S., and Acar, J. (2006). The effects of different initial Lactobacillus plantarum concentrations on some properties of fermented carrot juice. Journal of Food Processing and Preservation, 30(3), 352–363. http://doi.org/10.1111/j.1745-4549.2006.00070.x.
Ferrando, V., Quiberoni, A., Reinheimer, J., and Suárez, V. (2016). Functional properties of Lactobacillus plantarum strains: A study in vitro of heat stress influence. Food Microbiology, 54, 154–161. http://doi.org/10.1016/j.fm.2015.10.003.
Ferrando, V., Quiberoni, A., Reinhemer, J., and Suárez, V. (2015). Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiology, 48, 63–71. http://doi.org/10.1016/j.fm.2014.12.005.
Frediansyah, A., Nurhayati, R., and Sholihah, J. (2019). Lactobacillus pentosus isolated from Muntingia calabura shows inhibition activity toward alpha-glucosidase and alpha-amylase in intra and extracellular level. In IOP Conference Series: Earth and Environmental Science. 251 (1), 012045). http://doi.org/10.1088/1755-1315/251/1/01204.
Gajbhiye, R. L., Ganapathy, A., and Jaisankar, P. (2018). A review of α-glucosidase and α-amylase inhibitors for Type 2 diabetes isolated from some important Indian medicinal plants. Annals of Clinical Pharmacology and Therapeutics.1 (1), 1003-1013.
Gonzalez-Gonzalez, C. R., Machado, J., Correia, S., McCartney, A. L., Stephen Elmore, J., and Jauregi, P. (2019). Highly proteolytic bacteria from semi-ripened Chiapas cheese elicit angiotensin-I converting enzyme inhibition and antioxidant activity. LWT, 111, 449–456. http://doi.org/10.1016/j.lwt.2019.05.039.
González-Olivares, L. G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L., and García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista mexicana de ingeniería química, 10(2), 179-188. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382011000200004.
Guadarrama-Lezama, A. Y., Jaramillo-Flores, E., Gutiérrez-López, G. F., Pérez-Alonso, C., Dorantes-Álvarez, L., & Alamilla-Beltrán, L. (2014). Effects of Storage Temperature and Water Activity on the Degradation of Carotenoids Contained in Microencapsulated Chili Extract. Drying Technology, 32(12), 1435–1447. http://doi.org/10.1080/07373937.2014.900502
Gülçin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345–391. http://doi.org/10.1007/s00204-011-0774-2
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., … Salminen, S. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology Hepatology, 11(8), 506–514. http://doi.org/10.1038/nrgastro.2014.66.
Hütt, P., Songisepp, E., Rätsep, M., Mahlapuu, R., Kilk, K., and Mikelsaar, M. (2015). Impact of probiotic Lactobacillus plantarum TENSIA in different dairy products on anthropometric and blood biochemical indices of healthy adults. Beneficial microbes, 6(3), 233-243. http://doi.org/10.3920/BM2014.0035.
Ibarra, A., Acha, R., Calleja, M.-T., Chiralt-Boix, A., & Wittig, E. (2012). Optimization and shelf life of a low-lactose yogurt with Lactobacillus rhamnosus HN001. Journal of Dairy Science, 95(7), 3536–3548. http://doi.org/10.3168/jds.2011-5050.
Juárez-Tomás, de L, de R and Nader-Macías ME. (2002). Estimation of vaginal probiotic lactobacilli growth parameters with the application of the Gompertz model. Canadian Journal of Microbiology. 48(1):82-92. http://doi.org/10.1139/w01-135
Kulkarni, S., Haq, S. F., Samant, S., and Sukumaran, S. (2018). Adaptation of Lactobacillus acidophilus to Thermal Stress Yields a Thermotolerant Variant Which Also Exhibits Improved Survival at pH 2. Probiotics and Antimicrobial Proteins, 10(4), 717–727. http://doi.org/10.1007/s12602-017-9321-7.
Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., … Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914–1919. http://doi.org/10.1016/j.foodchem.2012.06.048.
Liu, X. T., Hou, C. L., Zhang, J., Zeng, X. F., and Qiao, S. Y. (2014). Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze-drying. Letters in Applied Microbiology, 59(4), 398–403. http://doi.org/10.1111/lam.12292.
Mada, S. B., Ugwu, C. P., and Abarshi, M. M. (2019). Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. International Journal of Peptide Research and Therapeutics. 1-18. http://doi.org/10.1007/s10989-019-09890-8.
Mannu, L., Comunian, R., and Francesca Scintu, M. (2000). Mesophilic lactobacilli in Fiore Sardo cheese: PCR-identification and evolution during cheese ripening. International Dairy Journal, 10(5), 383–389. https://doi.org/10.1016/S0958-6946(00)00074-1.
Melgar-Lalanne, G., Rivera-Espinoza, Y., Farrera-Rebollo, R., and Hernández-Sánchez, H. (n.d.). Supervivencia bajo condiciones de estrés de lactobacilos halotolerantes con características probióticas. Revista Mexicana de Ingeniería Química, 13(1), 323–335. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382014000100024.
Melgar-Lalanne, G., Rivera-Espinoza, Y., Reyes Méndez, A. I. A. I., and Hernández-Sánchez, H. (2013). In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese. Probiotics and Antimicrobial Proteins, 5(4), 239–251. http://doi.org/10.1007/s12602-013-9144-0.
Miliauskas, G., Venskutonis, P. R., and van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231–237. https://doi.org/10.1016/j.foodchem.2003.05.007
Morales, F., Morales, J. I., Hernández, C. H., and Hernández-Sánchez, H. (2011). Isolation and Partial Characterization of Halotolerant Lactic Acid Bacteria from Two Mexican Cheeses. Applied Biochemistry and Biotechnology, 164(6), 889–905. http://doi.org/10.1007/s12010-011-9182-6.
Mostafaie, A., Bahrami, G., and Chalabi, M. (2018). Effect of fermentation temperature and different Streptococcus thermophilus to Lactobacillus bulgaricus ratios on Kermanshahi roghan and yoghurt fatty acid profiles. Journal of Dairy Research, 85(4), 472–475. http://doi.org/10.1017/S0022029918000626.
Mustafa, S. M., Chua, L. S., El-Enshasy, H. A., Abd Majid, F. A., Hanapi, S. Z., & Abdul Malik, R. (2019). Effect of temperature and pH on the probiotication of Punica granatum juice using Lactobacillus species. Journal of Food Biochemistry, 43(4), e12805. https://doi.org/10.1111/jfbc.12805.
O’Hanlon, D. E., Moench, T. R., and Cone, R. A. (2013). Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PloS One, 8(11), e80074–e80074. http://doi.org/10.1371/journal.pone.0080074.
Østlie, H. M., Treimo, J., and Narvhus, J. A. (2005). Effect of temperature on growth and metabolism of probiotic bacteria in milk. International Dairy Journal, 15(10), 989–997. https://doi.org/10.1016/j.idairyj.2004.08.015.
Papadimitriou, K., Alegría, Á., Bron, P. A., de Angelis, M., Gobbetti, M., Kleerebezem, M., … Kok, J. (2016). Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837 LP – 890. http://doi.org/10.1128/MMBR.00076-15.
Peleg, M., and Corradini, M. G. (2011). Microbial Growth Curves: What the Models Tell Us and What They Cannot. Critical Reviews in Food Science and Nutrition, 51(10), 917–945. http://doi.org/10.1080/10408398.2011.570463.
Plavec, T. V., and Berlec, A. (2019). Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Applied Microbiology and Biotechnology, 103(5), 2053–2066. http://doi.org/10.1007/s00253-019-09628-y.
Price, P. B., and Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences, 101(13), 4631-4636. http://doi.org/10.1073/pnas.0400522101.
Rodríguez-Gómez, F., Bautista-Gallego, J., Romero-Gil, V., Arroyo-López, F. N., Garrido-Fernández, A., and García-García, P. (2012). Effects of salt mixtures on Spanish green table olive fermentation performance. LWT - Food Science and Technology, 46(1), 56–63. https://doi.org/10.1016/j.lwt.2011.11.002.
Sah, B. N. P., Vasiljevic, T., McKechnie, S., and Donkor, O. N. (2016). Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells. International Dairy Journal, 63, 99–106. https://doi.org/10.1016/j.idairyj.2016.08.003.
Settanni, L., and Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 27(6), 691–697. http://doi.org/10.1016/j.fm.2010.05.023
Shokryazdan, P., Jahromi, M. F., Bashokouh, F., Idrus, Z., and Liang, J. B. (2018). Antiproliferation effects and antioxidant activity of two new Lactobacillus strains. Brazilian Journal of Food Technology, 21, 1-8. https://doi.org/10.1590/1981-6723.6416.
Shu, G., He, Y., Wan, H., Hui, Y., & Li, H. (2017). Effects of Prebiotics on Antioxidant Activity of Goat Milk Fermented by Lactobacillus plantarum L60. Acta Universitatis Cibiniensis. Series E: Food Technology, 21(2), 11-18. http://doi.org/10.1515/aucft-2017-0010.
Silva, J. A., Marchesi, A., Wiese, B., and Nader-Macias, M. E. F. (2019). Technological characterization of vaginal probiotic lactobacilli: resistance to osmotic stress and strains compatibility. Journal of Applied Microbiology, 127(6), 1835–1847. https://doi.org/10.1111/jam.14442.
Song, S., Bae, D.-W., Lim, K., Griffiths, M. W., and Oh, S. (2014). Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing. International Journal of Food Microbiology, 191, 135–143. http://doi.org/10.1016/j.ijfoodmicro.2014.09.017.
Tamime, A. Y. (2002). Fermented milks: a historical food with modern applications–a review. European Journal of Clinical Nutrition, 56(4), S2–S15. http://doi.org/10.1038/sj.ejcn.1601657.
Tiderencel, K. A., Hutcheon, D. A., and Ziegler, J. (2020). Probiotics for the treatment of type 2 diabetes: A review of randomized controlled trials. Diabetes/Metabolism Research and Reviews, 36(1), e3213. DOI: 10.1002/dmrr.3213.
Tjørve, K. M. C., and Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PloS One, 12(6), e0178691–e0178691. https://doi.org/10.1371/journal.pone.0178691.
Vaštag, Ž., Popović, L., Popović, S., Petrović, L., and Peričin, D. (2010). Antioxidant and angiotensin-I converting enzyme inhibitory activity in the water-soluble protein extract from Petrovac Sausage (Petrovská Kolbása). Food Control, 21(9), 1298–1302. https://doi.org/10.1016/j.foodcont.2010.03.004.
Vatansever, S., Vegi, A., Garden-Robinson, J., and Iii, C. A. H. (2017). The effect of fermentation on the Physicochemical characteristics of dry-salted vegetables. Journal of Food Research, 6(5), 32–40. http://doi.org/10.5539/jfr.v6n5p32
Venegas-Ortega, M. G., Flores-Gallegos, A. C., Martínez-Hernández, J. L., Aguilar, C. N., and Nevárez-Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455.
Vijaya Kumar, B., Vijayendra, S. V. N., and Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products - a review. Journal of Food Science and Technology, 52(10), 6112–6124. http://doi.org/10.1007/s13197-015-1795-2.
Yao, A. A., Bera, F., Franz, C., Holzapfel, W., and Thonart, P. (2008). Survival Rate Analysis of Freeze-Dried Lactic Acid Bacteria Using the Arrhenius and z-Value Models. Journal of Food Protection, 71(2), 431–434. https://doi.org/10.4315/0362-028X-71.2.431.
Yuwono, S. D., and Kokugan, T. (2008). Study of the effects of temperature and pH on lactic acid production from fresh cassava roots in tofu liquid waste by Streptococcus bovis. Biochemical Engineering Journal, 40(1), 175–183. https://doi.org/10.1016/j.bej.2007.12.004.
Zhang, C., Yang, L., Gu, R., Ding, Z., Guan, C., Lu, M., and Gu, R. (2019). Mild heat stress limited the post-acidification caused by Lactobacillus rhamnosus hsryfm 1301 in fermented milk. Biotechnology Letters, 41(4), 633–639. http://doi.org/10.1007/s10529-019-02669-3.
Zhang, Z., Lv, J., Pan, L., and Zhang, Y. (2018). Roles and applications of probiotic Lactobacillus strains. Applied Microbiology and Biotechnology, 102(19), 8135–8143. https://doi.org/10.1007/s00253-018-9217-9.
Zhao, L., Jin, H., Lan, J., Zhang, R., Ren, H., Zhang, X., and Yu, G. (2015). Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro. Food Control, 54, 158–164. https://doi.org/10.1016/j.foodcont.2015.02.003.
Zotta, T., Parente, E., and Ricciardi, A. (2017). Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. Journal of Applied Microbiology, 122(4), 857–869. http://doi.org/10.1111/jam.13399.
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and van’t Riet, K. (1990). Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56(6), 1875-1881. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184525/
Published
2020-04-27
How to Cite
Andrade-Velasques, A., Dominguez-Cañedo, L., & Melgar-Lalanne, G. (2020). Growth kinetic model, antioxidant and hypoglycemic effects at different temperatures of potential probiotic Lactobacillus spp. Revista Mexicana De Ingeniería Química, 20(1), 37-49. https://doi.org/10.24275/rmiq/Alim1425
Section
Food Engineering

Most read articles by the same author(s)