Role of Eisenia foetida in the degradation of profenofos in presence of native bacterial communities

  • E.G. Gonzales-Condori
  • S.A. Ramírez-Revilla
  • J.A. Villanueva-Salas
Keywords: Eisenia foetida, Klebsiella oxytoca, Pseudomonas aeruginosa, degradation, profenofos.


The use of profenofos (PFF) increased due to its effectiveness against pests resistant to other organophosphates (OP). Its presence in the environment could produce acute or chronic poisoning for people who use it for daily agricultural activities as well as for people who get in contact with polluted soil, water, air or food. In this context, proposing alternatives to accelerate OP degradation processes is important. Therefore, the objective of the present study was to evaluate for 28 days the degradation process of PFF in soils with 50 mg PFF/kg (pH = 7.20 + / - 0.31) using Eisenia foetida (EF) and native bacteria (NB). The "control group" showed a PFF degradation of 52.95 +/- 1.69% in sterilized soils. NB achieved a degradation of 63.60 +/- 3.27%, EF degraded PFF by 72.65 +/- 1.92% and the combination of EF and NB, 79.21 +/- 1.79%. Bacteria with potential PFF degradation capacity were isolated and identified as Klebsiella oxytoca and Pseudomonas aeruginosa. It was shown that EF play an important role by accelerating the degradation of PFF in soils, presenting a possible synergy with Klebsiella oxytoca and Pseudomonas aeruginosa.


Abraham, J., Silambarasan, S., and Logeswari, P. (2014). Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2590-2596.
Blanco, G. G., Pérez, V. P., Villafuerte, J. O., Garrido, J. A., Cardoso, R. B., and González, L. B. (2020). Kinetics and microbial structure of nitrogen cycle bacteria contained in the rhizosphere of natural wetland polluted with chromium. Revista Mexicana de Ingeniería Química, 19(2)(2), 543-553.
Chakra Reddy, N., and Venkateswara Rao, J. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety, 71(2), 574-582.
Chawla, P., Kaushik, R., Shiva Swaraj, V. J., and Kumar, N. (2018). Organophosphorus pesticides residues in food and their colorimetric detection. Environmental Nanotechnology, Monitoring & Management, 10, 292-307.
Chu, S., Baker, M. R., Leong, G., Letcher, R. J., and Li, Q. X. (2018). Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins. Chemosphere, 199, 154-159.
Dadson, O. A., Ellison, C. A., Singleton, S. T., Chi, L.-H., McGarrigle, B. P., Lein, P. J., Farahat, F. M., Farahat, T., and Olson, J. R. (2013). Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. Toxicology, 306, 35-39.
Gotoh, M., Sakata, M., Endo, T., Hayashi, H., Seno, H., and Suzuki, O. (2001). Profenofos metabolites in human poisoning. Forensic Science International, 116(2), 221-226.
Guerrero-Barajas, C., Alanís-Sáchez, B., Florez-Ortiz, C., Cruz-Maya, J., and Jan-Roblero, J. (2019). Enhanced removal of methyl tert-butyl ether by yeast extract supplementation to a bacterial consortium. Revista Mexicana de Ingeniería Química, 18(2), 589-604.
Hao, Y., Zhao, L., Sun, Y., Li, X., Weng, L., Xu, H., and Li, Y. (2018). Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms. Environmental Pollution, 242, 728-737.
Haq, I., Nawas, A., Manzoor, Z., Rehman, A., Mukhtar, H., Aftab, M., and Arshad, Y. (2019). A new multi-stress resistant Wickerhamomyces anomalus: Isolation, identification and bioethanol fermentation potential. Revista Mexicana de Ingeniería Química, 18(3), 841-849.
Jabeen, H., Iqbal, S., Anwar, S., and Parales, R. E. (2015). Optimization of profenofos degradation by a novel bacterial consortium PBAC using response surface methodology. International Biodeterioration & Biodegradation, 100, 89-97.
Jariyal, M., Jindal, V., Mandal, K., Gupta, V. K., and Singh, B. (2018). Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicology and Environmental Safety, 159, 310-316.
Jokanović, M. (2018). Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology, 410, 125-131.
Khalifa, M. E., Kenawy, I. M. M., Abou El-Reash, Y. G., and Abdallah, A. B. (2017). Extractive separation of Profenofos as an organophosphorous insecticide from wastewater and plant samples using molecular imprinted cellulose. Journal of Environmental Chemical Engineering, 5(4), 3447-3454.
Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López-chuken, U. J., and Villarreal-chiu, J. F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190-208.
Le, T. D. H., Scharmüller, A., Kattwinkel, M., Kühne, R., Schüürmann, G., and Schäfer, R. B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145, 135-141.
Lin, Z., Zhen, Z., Ren, L., Yang, J., Luo, C., Zhong, L., Hu, H., Liang, Y., Li, Y., and Zhang, D. (2018). Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil. Chemosphere, 196, 467-475.
Liu, C., Qiang, Z., Tian, F., and Zhang, T. (2009). Photodegradation of etridiazole by UV radiation during drinking water treatment. Chemosphere, 76(5), 609-615.
Malghani, S., Chatterjee, N., Hu, X., and Zejiao, L. (2009). Isolation and characterization of a profenofos degrading bacterium. Journal of Environmental Sciences, 21(11), 1591-1597.
Malghani, S., Chatterjee, N., Yu, H. X., and Luo, Z. (2009). Isolation and identification of Profenofos degrading bacteria. Brazilian Journal of Microbiology, 40(4), 893-900.
Marutescu, L., and Chifiriuc, M. C. (2017). 11—Molecular mechanisms of pesticides toxicity. En A. M. Grumezescu (Ed.), New Pesticides and Soil Sensors (pp. 393-435). Academic Press.
Möhring, N., Gaba, S., and Finger, R. (2019). Quantity based indicators fail to identify extreme pesticide risks. Science of The Total Environment, 646, 503-523.
Nataraj, B., Hemalatha, D., Rangasamy, B., Maharajan, K., and Ramesh, M. (2017). Hepatic oxidative stress, genotoxicity and histopathological alteration in fresh water fish Labeo rohita exposed to organophosphorus pesticide profenofos. Biocatalysis and Agricultural Biotechnology, 12, 185-190.
OECD. (1984). Guideline for Testing of Chemicals No 207. Earthworm, acute toxicity tests. OECD, Paris, France.
Qu, H., Wang, P., Ma, R., Qiu, X., Xu, P., Zhou, Z., and Liu, D. (2014). Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Science of The Total Environment, 485-486, 415-420.
Quattrocchi, O., Abelaira, S., and Felipe Laba, R. (1992). Introduccion a la HPLC, Aplicacion y Practica.
Rani, R., Kumar, V., Gupta, P., and Chandra, A. (2019). Effect of endosulfan tolerant bacterial isolates (Delftia lacustris IITISM30 and Klebsiella aerogenes IITISM42) with Helianthus annuus on remediation of endosulfan from contaminated soil. Ecotoxicology and Environmental Safety, 168, 315-323.
Rother, H.-A. (2018). Pesticide labels: Protecting liability or health? – Unpacking “misuse” of pesticides. Current Opinion in Environmental Science & Health, 4, 10-15.
Shattuck, A. (2019). Risky subjects: Embodiment and partial knowledges in the safe use of pesticide. Geoforum.
Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., and Geissen, V. (2019). Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of The Total Environment, 653, 1532-1545.
Siripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., and Singkibut, S. (2015). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320-328.
Subsanguan, T., Vangnai, A. S., and Siripattanakul-Ratpukdi, S. (2020). Aerobic and anoxic degradation and detoxification of profenofos insecticide by Pseudomonas plecoglossicida strain PF1. Ecotoxicology and Environmental Safety, 190, 110129.
Sun, Y., Zhao, L., Li, X., Hao, Y., Xu, H., Weng, L., and Li, Y. (2019). Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation. Environmental Pollution, 248, 219-228.
Svobodová, M., Šmídová, K., Hvězdová, M., and Hofman, J. (2018). Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils. Environmental Pollution, 236, 257-264.
Talwar, M. P., and Ninnekar, H. Z. (2015). Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM. Journal of Basic Microbiology, 55(9), 1094-1103.
Teodoro, M., Briguglio, G., Fenga, C., and Costa, C. (2019). Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicology Reports.
Unger, T. A. (1996). - Profenofos. En T. A. Unger (Ed.), Pesticide Synthesis Handbook (p. 332). William Andrew Publishing.
Wang, Y., Cang, T., Zhao, X., Yu, R., Chen, L., Wu, C., and Wang, Q. (2012). Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental Safety, 79, 122-128.
Wei, Y., Zhao, Y., Lu, Q., Cao, Z., and Wei, Z. (2018). Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation. Bioresource Technology, 264, 277-284.
Xu, H.-J., Bai, J., Li, W.-Y., Zhao, L.-X., and Li, Y.-T. (2019). Removal of persistent DDT residues from soils by earthworms: A mechanistic study. Journal of Hazardous Materials, 365, 622-631.
Yang, H., Xue, B., Li, L., Zhou, S., Tu, Y., and Lin, C. (2008). Hydrolysis and soil sorption of insecticide pyraclofos. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 43(3), 219-223.
Zou, X., Xiao, X., Zhou, H., Chen, F., Zeng, J., Wang, W., Feng, G., and Huang, X. (2018). Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. Journal of Hazardous Materials, 359, 365-372.
How to Cite
Gonzales-Condori, E., Ramírez-Revilla, S., & Villanueva-Salas, J. (2020). Role of Eisenia foetida in the degradation of profenofos in presence of native bacterial communities. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 45-57.
Environmental Engineering