Effect of cold air plasmas on the morphology and thermal stability of bleached hemp fibers

  • F.J. Alonso-Montemayor https://orcid.org/0000-0002-0612-9150
  • C.M. López-Badillo
  • C.N. Aguilar-González
  • F. Ávalos-Belmontes
  • A.O. Castañeda-Facio
  • R. Reyna-Martínez
  • M.G. Neira-Velázquez
  • G. Soria-Argüello
  • D. Navarro-Rodríguez
  • M. Delgado-Aguilar
  • R.I. Narro-Céspedes
Keywords: plasma jet, low-pressure plasma, hemp fiber, thermal stability, cellulose

Abstract

The use of cold plasma surface modification techniques has lately gained increasing interest as a complementary green option to modify the thermal stability of bio-based fibers, and thus make them more suitable for polymer reinforcing applications. In this study, commercial bleached hemp (CBH) fibers were modified using low-pressure rotatory plasma (LPRP) and atmospheric-pressure plasma jet (APPJ) devices to be further characterized by Fourier transform infrared spectroscopy―attenuated total reflectance mode (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). FTIR analysis evidenced the oxidation and crosslinking of cellulose chains. XRD analysis revealed a slight increase in interplanar distances of cellulose chains, that was attributed to the interchain insertion of functional groups. SEM images displayed much rougher surfaces for the treated CBH fibers than for the untreated one. TGA showed that LPRP (30 min treatment) and APPJ increased the thermal resistance of CBH fibers in 30 and 61 °C, respectively. For LPRP, a longer exposition time (180 min) provoked significant eroding without improving the thermal resistance. Finally, the cold plasma surface modification of bleached hemp fibers may well assist with the mechanical interlocking and thermal resistance (during processing) when applied in polymer reinforcing.

References

Abdel-Fattah, E. (2019). Surface and thermal characteristics relationship of atmospheric pressure plasma treated natural luffa fibers. The European Physical Journal D 73, 1-8.
Abdullah, C., Azzahari, A., Rahman, N., Hassan, A. y Yahya, R. (2019). Optimizing treatment of oil palm-empty fruit bunch (OP-EFB) fiber: Chemical, thermal and physical properties of alkalized fibers. Fibers and Polymers 20, 527-537.
Acayanka, E., Tarkwa, J. y Laminsi, S. (2019). Evaluation of energy in a batch and circulating non-thermal plasma reactors during organic pollutant oxidation in aqueous solution. Plasma Chemistry and Plasma Processing 39, 75-87.
Alhuthali, A. y Low, M. (2013). Mechanical properties of cellulose fibre reinforced vinyl-ester composites in wet conditions. Journal of Materials Science 48, 6331-6340.
Almeida, F., Meili, L., Soletti, J., Esquerre, K., Ribeiro, L. y de Farias Silva, C. (2019). Oil produced water treatment using sugarcane solid residue as biosorbent. Revista Mexicana de Ingeniería Química 18, 27-38.
Alonso-Montemayor, F., Narro-Céspedes, R. y Oliva-Castañeda, A. (2017). Surface modification by plasma applications on lignocellulosic fibers. Journal of BioProcess and Chemical Technology 9, 21-26.
Araujo, J., Adamo, C., Costa e Silva, M. y De Paoli, M. (2013). Antistatic-Reinforced Biocomposites of Polyamide-6 and Polyaniline-Coated Curauá Fibers Prepared on a Pilot Plant Scale. Polymer Composites 34, 1081-1090.
Baltazar-Y-Jimenez, A. y Bismarck, A. (2007). Surface modification of lignocellulosic fibres in atmospheric air pressure plasma. Green Chemistry 9, 1057-1066.
Baltazar-Y-Jimenez, A., Bistritz, M., Schulz, E. y Bismarck, A. (2009). Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Composites Science and Technology, 68, 215-227.
Baltazar-y-Jimenez, A., Juntaro, J. y Bismarck, A. (2008). Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibers and dynamical mechanical properties of randomly-oriented short fiber composites. Journal of Biobased Materials and Bioenergy 2, 264-272.
Bar, M., Das, A. y Alagirusamy, R. (2019). Influence of flax/polypropylene distribution in twistless thermally bonded rovings on their composite properties. Polymer Composites 40, 1-12.
Brisset, J. y Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: Discharge, post-discharge and plasma activated water. Plasma Chemistry and Plasma Processing 36, 355-381.
Brunengo, E., Conzatti, L., Utzeri, R., Vicini, S., Scatto, M., Falzacappa, E., Castellano, M. y Stagnaro P. (2019). Chemical modification of hemp fibres by plasma treatment for eco-composites based on biodegradable polyester. Journal of Materials Science 54, 14367–14377.
de Farias, J., Cavalcante, R., Canabarro, B., Viana, H., Scholz, S. y Simão, R. (2017). Surface Lignin Removal on Coir Fibers by Plasma Treatment for Improved Adhesion in Thermoplastic Starch Composites. Carbohydrate Polymers 165, 429-436.
de Melo, R., Marques, M., Navard, P. y Duque, N. (2017). Degradation studies and mechanical properties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. Journal of Composite Materials 51, 1-9.
Del Rey, R., Serrat, R., Alba, J., Perez, H., Mutje, P. y Espinach, F. (2017). Effect of sodium hydroxide treatments on the tensile strength and the interphase quality of hemp core fiber-reinforced polypropylene composites. Polymers 9, 377-391.
Ebewele, R. (2000). Polymer science and technology. CRC press LLC, Florida.
Fridman, A. (2008). Plasma chemistry. Cambridge University Press, New York.
Gurunathan, T., Mohanty, S. y Nayak, S.K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A 77, 1-25.
Kalia, S. y Kumar, A. (2013). Surface Modification of Sunn Hemp Fibers Using Acrylation, Peroxide and Permanganate Treatments: A Study of Morphology, Thermal Stability and Crystallinity. Polymer-Plastics Technology and Engineering 52, 24-29.
Khan, F., Ahmad, S. y Kronfli, E. (2006). γ-Radiation Induced Changes in the Physical and Chemical Properties of Lignocellulose. Biomacromolecules 7, 2303-2309.
Liu, Y., Xie, J., Wu, N., Ma, Y., Menon, C. y Tong, J. (2019). Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26, 4707-4719.
Lu, N. y Oza, S. (2013). Effect of surface treatment of hemp fibers on the thermal stability of the hemp-PLA (poly lactic acid) composites. Advanced Materials Research 651, 499-504.
Macedo, M., Silva, G., Feitor, M., Costa, T., Ito, E. y Melo, J. (2020a). Composites from recycled polyethylene and plasma treated kapok fibers. Cellulose 27, 2115–2134
Macedo, M., Silva, G., Feitor, M., Costa, T., Ito, E. y Melo, J. (2020b). Surface modification of kapok fibers by cold plasma surface treatment. Journal of Materials Research and Technology. In press.
Martín del Campo, A., Robledo-Ortiz, J., Arellano, M., Jasso-Gastinel, C., Silva-Jara, J., López-Naranjo, E. y Pérez-Fonseca, A. (2020). Glycidyl methacrylate as compatibilizer of poly(lactic acid)/nanoclay/agave fiber hybrid biocomposites: Effect on the physical and mechanical properties. Revista Mexicana de Ingeniería Química 19, 455-469.
Moonart, U. y Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 26, 7271-7295.
Mutjé, P., Vallejos, M., Gironès, J., Vilaseca, F., López, A., López, P. y Méndez, J. (2006). Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science 102, 833-840.
Oza, S., Wang, R. y Lu, N. (2011). Thermal and mechanical properties of recycled high density polyethylene/hemp fiber composites. International Journal of Applied Science and Technology 1, 31-36.
Padovani, J., Legland, D., Pernes, M., Gallos, A., Thomachot-Schneider, C., Shah, D., Bourmand, A. y Beaugrand, J. (2019). Beating of hemp bast fibres: an examination of a hydromechanical treatment on chemical, structural, and nanomechanical property evolutions. Cellulose 26, 5665-5683.
Pickering, K., Aruan Efendy, M. y Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A 83, 98-112.

Poletto, M., Vinícios, P., Zeni, M., Zattera, A. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability 96, 679-685.
Poletto, M., Zattera, A. y Pistor, V. (2013). Structural characteristics and thermal properties of native cellulose. En: Cellulose - Fundamental Aspects (T. van de Ven y Godbout, L., eds.), Pp. 45-70. InTech, Rijeka.
Rodríguez-Soto, K., Piñeros-Castro, N. y Ortega-Toro, R. (2019). Laminated composites reinforced with chemically modified sheets-stalk of Musa cavendish. Revista Mexicana de Ingeniería Química 18, 749-758.
Santos, P., Spinacé, M., Fermoselli, K. y De Paoli, M. (2007). Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding. Composites Part A 38, 2404-2411.
Segal, L., Creely, J., Martin, A. y Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29, 786-794.
Seghini, M., Touchard, F., Sarasini, F., Chocinski-Arnault, L., Tirillὸ, J., Bracciale, M., Zvonek, M. y Cech, V. (2019). Effects of oxygen and tetravinylsilane plasma treatments on mechanical and interfacial properties of flax yarns in thermoset matrix composites. Cellulose 27, 511-530.
Takhur, V. y Singha, A. (2015). Surface modification of biopolymers. John Wiley & Sons, New Jersey.
Tanasă, F., Zănoagă, M., Teacă, C., Nechifor, M. y Shahzad, A. (2019). Modified hemp fibers intended for fiber-reinforced polymer composites used in structural applications—A review. I. Methods of modification. Polymer Composites 41, 5-31.
Thirumdas, R., Sarangapani, C. y Annapure, U. (2015). Cold plasma: A novel non-thermal technology for food processing. Food Biophysics 10, 1-11.
Toba, K., Yamamoto, H. y Yoshida, M. (2013). On the mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls: effects of chemical pretreatment and subsequent repeated dry-and-wet treatment. Journal of Wood Science 59, 359-366.
Torres-Segundo, C., Vergara-Sánchez J., Reyes-Romero, P., Gómez-Díaz, A., Rodríguez-Albarrán, M. y Martínez-Valencia H. Effect on discoloration by nonthermal plasma in dissolved textile dyes: Acid black 194. Revista Mexicana de Ingeniería Química 18, 939-947.
Published
2020-06-04
How to Cite
Alonso-Montemayor, F., López-Badillo, C., Aguilar-González, C., Ávalos-Belmontes, F., Castañeda-Facio, A., Reyna-Martínez, R., Neira-Velázquez, M., Soria-Argüello, G., Navarro-Rodríguez, D., Delgado-Aguilar, M., & Narro-Céspedes, R. (2020). Effect of cold air plasmas on the morphology and thermal stability of bleached hemp fibers. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 457-467. https://doi.org/10.24275/rmiq/Mat1510