Extrusion parameters to produce a PLA-starch derived thermoplastic polymer

Keywords: biodegradable, corn starch, polylactic acid, polymer, thermoplastic

Abstract

The purpose of this study was to develop a biodegradable thermoplastic polymer based on starch and polylactic acid (PLA) blends with mechanical properties adequate for a wide range of applications. A thermoplastic starch (TPS) was formulated using native corn starch, glycerol as a plasticizer ranging from 30 to 50% (w/w) and citric acid (1.0%, w/w) as a crosslinker. The TPS was mixed with polylactic acid (PLA) [0-50%, w/w]. The material was prepared by extrusion using a single screw extruder. The variables for the experiment design were PLA concentration, extrusion temperature, glycerol concentration, and velocity of the screw. Samples before and after extrusion were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DCS), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction. We evaluated the mechanical Young’s modulus, tensile strength, and elongation at break. All treatments were performed according to the experiment design. The results of the characterization of the material were analyzed using the response surface methodology (RSM). The RSM revealed the optimum PLA concentration, extrusion temperature, and screw velocity that would produce a corn starch-PLA biodegradable plastic with mechanical properties closer to those of the petroleum-derived plastics.

References

Acosta, H. A., Villada, H. S., Torres, G. A., & Ramírez, J. G. (2006). Morfología Superficial de Almidones Termoplásticos Agrio de Yuca y Nativo de Papa por Microscopía Óptica y de Fuerza Atómica. Información Tecnológica, 17(3). https://doi.org/10.4067/s0718-07642006000300010
Agama-Acevedo, E., Bello-Pérez, L. A., G., P.-V., & Evangelista-Lozano, S. (2015). Inner structure of plantain starch granules by surface chemical gelatinization: Morphological, physicochemical and molecular properties. Revista Mexicana de Ingeniería Química, 14(1), 73–80.
Agama-Acevedo, E., Salinas-Moreno, Y., Pacheco-Vargas, G., & Bello-Pérez, L. A. (Centro de D. de P. B. I. (2011). Características físicas y químicas de dos razas de maíz azul: morfología del almidón* physical and chemical characteristics of blue corn from two races: starch morphology. Revista Mexicana de Ciencias Agrícolas, 2(3), 317–329.
Aldana, A. S., Sandoval, E. R., & Quintero, A. F. (2005). Aplicación Del Análisis Por Calorimetría Diferencial De Barrido (Dsc) Para La Caracterización De Las Modificaciones Del Almidó Application of Analysis By Differential Scanning Calorimetry (Dsc) for the Characterization of the Modifications of the Starch. Año, 72, 45–53. https://doi.org/10.1111/petr.12743
Alvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas Physicochemical and Morphological Analyses of Yam, Cassava and Potato Starches and Determination of their Viscosity. Información Tecnológica (Vol. 19). Retrieved from https://scielo.conicyt.cl/pdf/infotec/v19n1/art04.pdf
Ashter, S. A. (2016). Types of Biodegradable Polymers. In Introduction to Bioplastics Engineering (pp. 81–151). https://doi.org/10.1016/B978-0-323-39396-6.00005-1
Askeland, D. R. (1994). The Science and Engineering of Materials. European Journal of Engineering Education, 19(3), 380. https://doi.org/10.1080/03043799408928327
Billmeyer, F. W. (2004). Ciencia de los Polímeros. Ciencia De Los Polimeros.
Bustamante, B. P. (2012). La degradación de los plásticos. Revista Universidad EAFIT.
Carrasco, F., & Santana, O. O. (2010). Procesado del ácido poliláctico (PLA) y de nanocompuestos PLA/Montmorillonita en planta piloto: Estudio de sus cambios estructurales y de su estabilidad térmica. Afinidad Lxvi, 01, 107–113.
Chen, C., Gao, J., & Yan, Y. (1998). Observation of the type of hydrogen bonds in coal by FTIR. Energy and Fuels, 12(3), 446–449. https://doi.org/10.1021/ef970100z
Cortés, J. F., Fernández, A. L., Mosquera, A., & Velasco, R. (2014). Evaluación de propiedades mecánicas, ópticas y de barrera en películas activas de almidón de yuca. Biotecnología En El Sector Agropecuario y Agroindustrial, 12(1), 88–97. Retrieved from http://www.scielo.org.co/pdf/bsaa/v12n1/v12n1a11.pdf
Da Róz, A. L., Zambon, M. D., Curvelo, A. A. S., & Carvalho, A. J. F. (2011). Thermoplastic starch modified during melt processing with organic acids: The effect of molar mass on thermal and mechanical properties. Industrial Crops and Products, 33(1), 152–157. https://doi.org/10.1016/j.indcrop.2010.09.015
Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575–581. https://doi.org/10.1016/j.carbpol.2014.09.005
Escobar-Barrios, V. a, Rangel-Méndez, J. R., Pérez-Aguilar, N. V, Andrade-Espinosa, G., & Dávila-Rodríguez, J. L. (2012). Infrared Spectroscopy - Materials Science, Engineering and Technology. Infrared Spectroscopy - Materials Science, Engineering and Technology. https://doi.org/10.5772/2055
Fan, M., Dai, D., & Huang, B. (2012). Fourier Transform - Materials Analysis. Fourier Transform - Materials Analysis. https://doi.org/10.5772/2659
Fan, Q. G., Lewis, D. M., & Tapley, K. N. (2001). Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 82(5), 1195–1202. https://doi.org/10.1002/app.1953
Farah, J. S., Silva, M. C., Cruz, A. G., & Calado, V. (2018). Differential calorimetry scanning: current background and application in authenticity of dairy products. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2018.02.006
Gaur, U., & Wunderlich, B. (1980, March). The Glass Transition Temperature of Polyethylene. Macromolecules. https://doi.org/10.1021/ma60074a045
Gere, J., & Goodno, B. (2009). Mechanichs of Materials, 7th Edition. Cengage Learning.
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Gómez, M. H., Waniska, R. D., & Rooney, L. W. (1991). Starch Characterization of Nixtamalized Corn Flour. Cereal Chemistry.
Henrist, D., & Remon, J. P. (1999). Influence of the process parameters on the characteristics of starch based hot stage extrudates. International Journal of Pharmaceutics, 189(1), 7–17. https://doi.org/10.1016/S0378-5173(99)00229-X
Hernández-Medina, M., Torruco-Uco, J. G., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/S0101-20612008000300031
Hietala, M., Mathew, A. P., & Oksman, K. (2013). Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. European Polymer Journal, 49(4), 950–956. https://doi.org/10.1016/j.eurpolymj.2012.10.016
Inamuddin. (2016). Preface. Green Polymer Composites Technology: Properties and Applications. https://doi.org/10.1201/9781315371184
Johansson, C., Bras, J., Mondragon, I., Nechita, P., Plackett, D., Šimon, P., … Aucejo, S. (2012). Renewable fibers and bio-based materials for packaging applications - A review of recent developments. BioResources. https://doi.org/10.15376/biores.7.2.2506-2552
Jun, C. L. (2000). Reactive blending of biodegradable polymers: PLA and starch. Journal of Polymers and the Environment, 8(1), 33–37. https://doi.org/10.1023/A:1010172112118
Kiran, M. D., Govindaraju, H. K., Jayaraju, T., & Kumar, N. (2018). Review-Effect of Fillers on Mechanical Properties of Polymer Matrix Composites. In Materials Today: Proceedings (Vol. 5, pp. 22421–22424). https://doi.org/10.1016/j.matpr.2018.06.611
Law, K. L. (2016). Plastics in the Marine Environment. https://doi.org/10.1146/annurev-marine-010816-060409
Liu, Z. Q., Yi, X. S., & Feng, Y. (2001). Effects of glycerin and glycerol monostearate on performance of thermoplastic starch. Journal of Materials Science, 36(7), 1809–1815. https://doi.org/10.1023/A:1017589028611
Lourdin, D., Bizot, H., & Colonna, P. (2004). “Antiplasticization” in starch-glycerol films? Journal of Applied Polymer Science, 63(8), 1047–1053. https://doi.org/10.1002/(sici)1097-4628(19970222)63:8<1047::aid-app11>3.0.co;2-3
Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366–375. https://doi.org/10.3144/expresspolymlett.2009.46
Lunt, J. (2002). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1–3), 145–152. https://doi.org/10.1016/s0141-3910(97)00148-1
M, R. V., Palacios, L., & M, J. R. (2012). Películas biodegradables a partir de almidón modificado de yuca , agente antimicrobiano y plastificante. Biotecnología En El Sector Agropecuario y Agroindustria, 10(2), 152–159.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379–386. https://doi.org/10.1016/S0144-8617(02)00058-9
Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. In Journal of Materials Science: Materials in Medicine (Vol. 14, pp. 127–135). https://doi.org/10.1023/A:1022015712170
Martin, O., & Avérous, L. (2001). Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6
Materials, P., Material, E. I., Materials, E. I., Matrix, P., & Materials, C. (2019). Standard Test Method for Tensile Properties of Plastics 1. ASTM Book of Standards, 1–16. https://doi.org/10.1520/D0638-08.1
Medina, J., & Salas, J. (2008). Caracterización morfológica del granulo de almidón nativo : Apariencia , forma , tamaño y su distribución Morphological Characterization of Native Starch Granule : Appearance , Shape , Size and its Distribution. Revista de Ingeneria Universidad de Los Andes, 27, 56–65.
Mendoza Quiroga, R., & Velilla Díaz, W. (2011). Methodology for the thermo-mechanical characterization of biodegradable plastic films. Prospectiva, 9(1), 46–51. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=4207692&info=resumen&idioma=ENG
Mitrus, M., & Moscicki, L. (2010). Extrusion-Cooking of TPS. In Thermoplastic Starch: A Green Material for Various Industries (pp. 149–157). https://doi.org/10.1002/9783527628216.ch7
Mohanty, A. K. (2011). Foreword. Handbook of Bioplastics and Biocomposites Engineering Applications. https://doi.org/10.1002/9781118203699
Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination Of Poly(lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 1–22. https://doi.org/10.3390/ma10080952
Rodríguez, Martínez, & González, de la C. (2001). Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada. Superficies y Vacío, 13, 61–65.
Rodríguez, S., & Fernández. (2007). Evaluación De La Retrogradación Del Almidón En Harina De Yuca Precocida Evaluation of Starch Retrogradation in Cassava Flour From Precooked Parenchyma Avaliação Da Retrogradação Do Amido Em Farinha De Mandioca Precozida. Revista Colombiana de Química, (1), 13–30. Retrieved from http://www.scielo.org.co/pdf/rcq/v36n1/v36n1a02.pdf
SHEN, M. C., & TOBOLSKY, A. V. (2009). Glass Transition Temperature of Polymers. In International Agrophysics (pp. 27–34). https://doi.org/10.1021/ba-1965-0048.ch002
Shirai, M. A., Olivato, J. B., Garcia, P. S., Müller, C. M. O., Grossmann, M. V. E., & Yamashita, F. (2013). Thermoplastic starch/polyester films: Effects of extrusion process and poly (lactic acid) addition. Materials Science and Engineering C, 33(7), 4112–4117. https://doi.org/10.1016/j.msec.2013.05.054
Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2014). Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets. Polymer Testing, 33, 34–39. https://doi.org/10.1016/j.polymertesting.2013.11.001
Tábi, T., Sajó, I. E., Szabó, F., Luyt, A. S., & Kovács, J. G. (2010). Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters, 4(10), 659–668. https://doi.org/10.3144/expresspolymlett.2010.80
van Soest, J. J. G., Tournois, H., de Wit, D., & Vliegenthart, J. F. G. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 279(C), 201–214. https://doi.org/10.1016/0008-6215(95)00270-7
Vieyra Ruiz, H., Martínez, E. S. M., & Méndez, M. Ã. A. (2011). Biodegradability of polyethylene-starch blends prepared by extrusion and molded by injection: Evaluated by response surface methodology. Starch/Staerke, 63(1), 42–51. https://doi.org/10.1002/star.201000075
Villada, H. S., Acosta, H. A., & Velasco, R. J. (2008). Investigación de almidones termoplásticos, precursores de productos biodégradables. Informacion Tecnologica. https://doi.org/10.4067/s0718-07642008000200002
Yu, L., & Christie, G. (2001). Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydrate Polymers, 46(2), 179–184. https://doi.org/10.1016/S0144-8617(00)00301-5
Yuryev, V. P., Nemirovskaya, I. E., & Maslova, T. D. (1995). Phase state of starch gels at different water contents. Carbohydrate Polymers, 26(1), 43–46. https://doi.org/10.1016/0144-8617(95)98833-3
Published
2020-07-04
How to Cite
García-Cruz, H., Jaime-Fonseca, M., Von Borries-Medrano, E., & Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 395-412. https://doi.org/10.24275/rmiq/Poly1529