Biodigester with mixing by hydraulic recirculation of the wastewater on biogas production: Fundamentals in the design and scaling by a dimensional analysis

  • S.G. Monroy-Oropeza
  • A. Jiménez-González
  • M. Gutiérrez-Rojas
  • S.A. Medina-Moreno
Keywords: Biogas production, anaerobic digestion, biodigester, hydraulic recirculation, scaling

Abstract

In the present work were established fundamentals relations and criteria for characterization and scaling on the biogas production of a biodigester operated with mixing by hydraulic recirculation of the wastewater. An ovoid geometry for the biodigester was chosen, and with the scale factor and geometric relationships were developed equations to scaling geometrically the biodigester, building the biodigester.slx program for the calculates in Simulink (Matlab® software). Seventeen process variables were identified and by means of the dimensional analysis accord to the p theorem of Vaschy-Buckingham were correlated to generate the dimensionless numbers of Geometry, Reynolds, Power, Recirculation, and Damköhler I. The dimensionless functions and dimensionless numbers allowed developing expressions for power consumption and the biogas production volumetric rate from the recirculation velocity and hydraulic recirculation rate, respectively. The above was done considering the next three aspects, the behavior of the wastewater as non-Newtonian fluid, the sludge and manure concentration, and the mixing effect by hydraulic recirculation of the wastewater. Further, from the similitude principles of geometry, kinematic, dynamic, and chemical were established criteria and equations for scaling of recirculation velocity, the power consumption, and the biogas production volumetric rate. The work is a platform to study biogas production by anaerobic digestion in biodigesters operated by batch with mixing by hydraulic recirculation of the wastewater.

References

Achinas, S., Achinas, V., Euverink, G. J. W., A. (2017). Technological overview of biogas production from biowaste. Engineering 3, 299-307. https://doi.org/10.1016/J.ENG.2017.03.002
Achkari-Begdouri, A. (1992). Rheological properties of moroccan dairy cattle manure. Bioresource Technology 40, 149-156. https://doi.org/10.1016/0960-8524(92)90201-8
Ayol, A., Filibeli, A., Dentel, S. (2006). Evaluation of conditioning responses of thermophilic-mesophilic anaerobically and mesophilic aerobically digested biosolids using rheological properties. Water Science Technology 54, 23-21. https://doi.org/10.2166/wst.2006.543
Baudez, J.C., Markis, F., Eshtiaghi, N., Slatter, P. (2011). The rheological behaviour of anaerobic digested sludge. Water Research 45, 5675-5680. https://doi.org/10.1016/j.watres.2011.08.035
Cabezas, A., Calabria, J., Callejas, C., Gáles, A., Hamelin, J., Marone, A., Souza, Z., Trably, E., Etchebehere, C. (2015). How to use molecular biology tools for the study of anaerobic digestión process. Environmental science biotechnology 14, 555-593. https://doi.org/10.1007/s11157-015-9380-8
Cao, X., Jiang, Z., Cui, W., Wang, Y., Yang, P. (2016). Rheological propeties of municipal sewage sludge: dependency on solid concentration and temperature. Procedia Environmental Sciences 31, 113-121. https://doi.org/10.1016/j.proenv.2016.02.016
Demirer, N., Chen, S. (2005). Anaerobic digestión of dairy manure in a hybrid reactor with biogás recirculation. World Journal of Microbiology & Biotechnology 21, 1509-1514. https://doi.org/10.1007/s11274-005-7371-6
Dudukovic, M.P., Mills, P.L. (2015). Scale-up and multiphase reaction engineering. Current Opinion in Chemical Engineering 9, 49-58. https://doi.org/10.1016/j.coche.2015.08.002
Eshtiaghi, N., Markis, F., Yap, S.H., Baudez, J.-C., Slatter, P. (2013). Rheological characterisation of municipal sludge: A review. Water Research 47, 5493-5510. https://doi.org/10.1016/j.watres.2013.07.001
Eshtiaghi, N., Yap, S.D., Markis, F., Baudez, J.-C., Slatter, P. (2012). Clear model fluids to emulate the rheological properties of thickened digested sludge. Water Research 46, 3014-3022. https://doi.org/10.1016/j.watres.2012.03.003
Ghanimeh, S., El Fadel, M., Saikaly, P. (2012). Mixing effect on thermophilic anaerobic digestión of source-sorted organic fraction of municipal solid waste. Bioresource Technology 117, 63-71. https://doi.org/10.1016/j.biortech.2012.02.125
Gómez, X., Cuetos, M.J., Cara, J., Morán, A., García, A.I. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Renewable Energy 31, 2017-2024. https://doi.org/10.1016/j.renene.2005.09.029
International Energy Agency (IEA). (2015). Energy and climate: state of play. En: Energy and climate change, (M. van der Hoeven ed), Pp: 17-31. OECD/IEA Final report. Paris, France.
Irastorza, T.V., Fernández, M.X. (2010). Balance nacional de energía y su relación con el inventario nacional de emisiones, realidad, datos y espacio. Revista internacional de estadística y geografía 1, 44-58. https://www.inegi.org.mx/rde/rde_01/doctos/rde_01_art6.pdf
Kaparaju, P., Buendía, I., Ellegaard, L., Angelidakia, I. (2008). Effects of mixing on methane production during thermophilic anaerobic digestion manure: Lab-scale and pilot-scale studies. Bioresource Technology 99, 4919–4928. https://doi.org/10.1016/j.biortech.2007.09.015
Kaparaju, P., Ellegaard, L., Angelidakia, I. (2009). Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies. Bioresource Technology 100, 701–709. https://doi.org/10.1016/j.biortech.2008.07.023
Karim, K., Hoffman, R., Al-Dahhan, M.H. (2008). Digestion of sand-laden manure slurry in an upflow anaerobic solids removal (UASR) digester. Biodegradation 19, 21-26. https://doi.org/10.1007/s10532-007-9111-0
Karim, K., Hoffman, R., Klasson, K.T., Al-Dahhan, M.H. (2005c). Anaerobic digestión of animal waste: Effect of mode of mixing. Water Research 39, 3597-3606. https://doi.org/10.1016/j.watres.2005.06.019
Karim, K., Hoffman, R., Klasson, T., Al-Dahhan, M.H. (2005b). Anaerobic digestión of animal waste: Waste strength versus impact of mixing. Bioresource Technology 96, 1771-1781. https://doi.org/10.1016/j.biortech.2005.01.020
Karim, K., Klasson, K.T., Hoffman, R., Drescher, S.R., DePaoli, D.W., Al-Dahhan, M.H. (2005a). Anaerobic digestión of animal waste: Effect of mixing. Bioresource Technology 96, 1607-1612. https://doi.org/10.1016/j.biortech.2004.12.021
Khalili-Garakani, A.H., Mostoufi, N., Sadeghi, F., Hosseinzadeh, M., Fatourechi, H., Sarrafzadeh, M.H., Mehrnia, M.R. (2011). Comparison between different models for rheological characterization of activated sludge. Iranian Journal of Environmental Health Science & Engineering 8, 255-264. http://ijehse.tums.ac.ir/index.php/jehse/article/view/308/307
Kowalczyk, A., Harnisch, E., Schwede, S., Gerber, M., Span, R. (2013). Different mixing modes for biogás plants using energy crops. Applied Energy 112, 465-472. https://doi.org/10.1016/j.apenergy.2013.03.065
Landry, H., Laguë, C., Roberge, M. (2004). Physical and rheological properties of manure products. Applied Engineering in Agriculture 20, 277–288. https://elibrary.asabe.org/abstract.asp?aid=16061
Li, Ch., Wang, X., Zhang, G., Yu, G., Lin, J., Wang, Y. (2017). Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestión of sewage sludge for dewatering and biogás production: Bench-scale research and pilot-scale verification. Water Research 117, 49-57. https://doi.org/10.1016/j.watres.2017.03.047
Lindmark, J., Eriksson, P., Thorin, E. (2014b). The effects of different mixing intensities during anaerobic digestión of the organic fraction of municipal solid waste. Waste Management 34, 1391-1397. https://doi.org/10.1016/j.wasman.2014.04.006
Lindmark, J., Thorin, E., Fdhila, R.B., Dahlquist, E. (2014a). Effects of mixing on the result of anaerobic digestión: Review. Renewable and Sustainable Energy Reviews 40, 1030-1047. https://doi.org/10.1016/j.rser.2014.07.182
Liu, G.-J., Deng, L.-W. (2017). Rheological properties of anaerobic sludge. Environmental Technology Reviews 6, 199-208. https://doi.org/10.1080/21622515.2017.1404138
Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., Sun, Y. (2012). Pilot-scale anaerobic co-digenstion of municipal biomass waste: Focusing on biogás production and GHG reduction. Renewable Energy 44, 463-468. https://doi.org/10.1016/j.renene.2012.01.092
López, C.M., García, A., Rios, M., Pérez, M.A., Román, J., García, L., Villaroel, A. (2018). Escalamiento piloto de la síntesis de zeolita NaA a partir de geles aluminosilicatos obtenidos con materiales industriales venezolanos no tratados. Revista Mexicana de Ingeniería Química 17, 75-86. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/LopezC
Low, S.Ch., Eshtiaghi, N., Shu, Li., Parthasarathy, R. (2017). Flow patterns in the mixing of sludge simulant with jet recirculation system. Process safety and environmental protection 112, 209-221. https://doi.org/10.1016/j.psep.2017.08.016
Mao, C., Feng, Y., Wang, X., Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032
Mata-Alvarez, J., Mace, S., Llabres, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource. Technology 74, 3-16. https://doi.org/10.1016/S0960-8524(00)00023-7
Metzner, A.B., Reed, J.C. (1955). Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions. A.I.Ch.E. Journal 1, 434-440. https://doi.org/10.1002/aic.690010409
Monteith, H.D., Stephenson, J.P. (1981). Mixing efficiencies in full-scale anaerobic digesters by tracer methods. Journal WPCF 53, 78–84. https://www.jstor.org/stable/25041020
Nishio, N., Nakashimada, Y. (2007). Recent development of anaerobic digestion processes for energy recovery from wastes. Journal of Biosciences and Bioengineering 103, 105-112. https://doi.org/10.1263/jbb.103.105
Nkemka, N.V., Murto, M. (2010). Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. Journal of Environmental Management 91, 1573-1579. https://doi.org/10.1016/j.jenvman.2010.03.004
Pazheri, F.R., Othman, M.F., Malik, N.H. (2014). A review on global renewable electricity scenario. Renewable ans sustainable energy reviews 31, 835-845. https://doi.org/10.1016/j.rser.2013.12.020
Rico, C., Rico, J.L., Muñoz, N., Gómez, B., Tejero, I. (2011). Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a pilot plant. Engineering in Life Science 11, 476–481. https://doi.org/10.1002/elsc.201100010
Rittmann, B.E., Lee, H-S., Zhang, H., Alder, J. (2008). Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Science and Technology 58, 1895-1901. https://doi.org/10.2166/wst.2008.547
Sánchez-Rubal, J. (2016). Optimización de la agitación de un digestor anaerobio mediante mecánica de fluidos computacional. Tesis Doctoral, Universidad Politécnica de Madrid, España. https://dialnet.unirioja.es/servlet/tesis?codigo=116369
Svensson, L.M., Christensson, K., Björnsson, L. (2006). Biogas production from crop residues on a farm-scale level in Sweden: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. Bioprocess and Biosystem Engineering 29, 137-142. https://doi.org/10.1007/s00449-006-0064-1
Teniza-García, O., Solís-Oba, M.M., Pérez-López, M.E., González-Prieto, R., Valencia-Vázquez, R. (2015). Producción de metano utilizando residuos cunículas. Revista Mexicana de Ingeniería Química 14, 321-334. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382015000200009&lng=es&tlng=pt.
Terashima, M., Goel, R., Komatsu, K., Yasui, H., Takahashi, H., Li, Y.Y., Noike, T. (2009). CFD simulation of mixing in anaerobic digesters. Bioresource Technology 100, 2228-2233. https://doi.org/10.1016/j.biortech.2008.07.069
Wu, B., Chen, S. (2008). CFD simulation of non-newtonian fluid flow in anaerobic digesters. Biotechnology and Bioengineering 99, 700-709. https://doi.org/10.1002/bit.21613
Xiong, X., Ning, P., Zhou, Ch. Qu, G. Jia, L. (2015). Influence of mixing on mesophilic anaerobic digestión for biogás production from cow manure. En: Advances in energy science and equipment engineering, (Zhou, S., Patty, A., Chen, S. eds.), Pp. 282-286, Taylor & Francies Group, London.
Yu, Z., Schanbacher, F.L. (2010). Production of methane biogas as fuel through anaerobic digestión. En: Sustainable biotechnology, (O.V. Singh y S.P. Harvey eds.), Pp. 105-127, Springer, Netherlands. https://doi.org/10.1007/978-90-481-3295-9_6
Zhu, Z., Hsueh, M.K., He, Q. (2011). Enhancing biomethanation of municipal waste sludge with grease trap waste as co-substrate. Renewable Energy 36, 1802-1807. https://doi.org/10.1016/j.renene.2010.11.014
Zlokarnik, M. (2002). Scale-up in chemical engineering. Editorial Wiley-VCH Verlag GmbH & Co., Federal Republic of Germany.
Zupancic, G.D., Zevart, N.U., Ros, M. (2008). Full-scale anaerobic co-digestion of organic waste and municipal sludge. Biomass and Bioenergy 32, 162-167. https://doi.org/10.1016/j.biombioe.2007.07.006
Published
2020-05-28
How to Cite
Monroy-Oropeza, S., Jiménez-González, A., Gutiérrez-Rojas, M., & Medina-Moreno, S. (2020). Biodigester with mixing by hydraulic recirculation of the wastewater on biogas production: Fundamentals in the design and scaling by a dimensional analysis. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 81-99. https://doi.org/10.24275/rmiq/Bio1545
Section
Biotechnology

Most read articles by the same author(s)

1 2 > >>