Structural changes in the proteins from two species of the genus vigna by effect of different treatments

Keywords: Vigna unguiculata, Vigna umbellata, IR, Raman, spectroscopis


A study of the thermal treatment effect on the protein structure of the rice bean and cowpea bean was conduced. The protein was isolated by isoelectric focusing and electrophoretic pattern, FT-IR and FT-Raman spectroscopy were used for their characterization. The results showed that in both species the thermal treatment originate modifications on the conformational structure modifying the secondary structure, disorder level and agregation fractions. The FT-IR and FT-Raman spectros indicate that the main secondary structure is the protein of both species, was the β-sheet with a smaller contribution of the α-helix structure. The structure 310 helix and the sulfhydril groups were detected in the protein of both species, in addition the presence of some aminoacids also were observed (Cys, Lys, Trp, Phe, Tyr and Met). The electrophoretic pattern showed a significantl reduction in the number of high molecular weight subunits by effect of thermal treatment and isolation process, two hight molecular weight bands are mantained before and after treatments (23 kDa and 50 kDa), these fractions could be a stable subunits and common ancestor in both species.


Alexov, E. (2004). Numerical calculations of the pH of maximal protein stability: The effect of the sequence composition and three-dimensional structure. European Journal of Biochemistry 271.1, 173-185.
AOAC (1995) Official methods of analysis of AOAC international,16th Edición. AOAC, Rockville.
Arcan, I. y Yemenicioğlu, A. (2007). Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chemistry 103, 301-312.
Baltacıoğlu, H., Bayındırlı, A., Severcan, M., y Severcan, F. (2015). Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: A FTIR study. Food chemistry 187, 263-269.
Bernardino-Nicanor, A., Ortíz-Moreno, A., Martínez-Ayala, A.L. y Dávila-Ortíz, G. (2000) Guava Seed Protein Isolate: Functional and Nutritional Characterization. Journal of Food Biochemistry 25, 77-90.
Damaschun, G., Damaschun, H., Fabian, H., Gast, K., Krober, R., Wieske, M. y Zirwer, D. (2000). Conversion of yeast phosphoglycerate kinase into amyloid-like structure. Proteins: Structure, Function, and Bioinformatics 39, 204 –211.
Devi, Ch.B., Kushwaha, A., y Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). Journal of food Science and Technology 52, 6821-6827.
Dogan, A., Siyakus, G. y Severcan, F. (2007). FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food Chemistry 100, 1106-1114.
Dong, A., Randolph, T.W. y Carpenter, J.F. (2000). Entrapping intermediates of thermal aggregation in α-helical proteins with low concentration of guanidine hydrochloride. Journal of Biological Chemistry 275, 27689 –27693.
Gonçalves, A. Goufo, P., Barros, A., Domínguez-Perles, R., Trindade, H., Rosa, E.A.S., Ferreira, L., Rodriguez, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture 96, 2941-2951.
Güler, G., Vorob´ev, M.M., Vogel, V.Y Mäntele, W. (2016). Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 161, 8-18.
Hoque B.R., Wadikar, D.D. y Patki, P.E. (2016). Rice bean: nutritional vibrant bean of Himalayan belt (North East India). Nutrition & Food Science 46, 412-431.
Ignjatović, N., Savić, V., Najman, S., Plavšić, M. y Uskoković, D. (2001). A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22, 571-575.
Iseki, K., Takahashi, Y., Muto, Ch., Naito, K., Tonooka, N. (2016). Diversity and evolution of salt tolerance in the genus Vigna. PloS ONE 10, 1-21.
Jayasena V., Chih H.J., Nasar-Abbas S.M. (2011). Efficient isolation of lupin protein. Food Australia 63, 306–309
Katoch, R. (2011). Morpho-physiological and nutritional characterization of rice bean (Vigna umbellata). Acta Agronomica Hungarica 59, 125-136.
Katoch, R. (2013). Nutritional potential of rice bean (Vigna umbellata): anunderutilized legume. Journal of Food Science 78, C8–C16.
Kaur, A., Kaur, P., Singh, N., Virdi, A.S., Singh, P. y Rana, J.C. (2013). Grains, starch and protein characteristics of rice bean (Vigna umbellata) grown in Indian Himalaya regions. Food Research International 54, 102–110.
Kaur, M. y Kawatra, B. L. (2000). Effect of domestic processing on flatus producing factors in ricebean (Vigna umbellata). Food/Nahrung 44, 447–450.
Kharlamova, A., Inthavong, W., Nicolai, T. y Chassenieux, C. (2016). The effect of aggregation into fractals or microgels on the charge density and the isoionic point of globular proteins. Food hydrocolloids 60, 470-475.
Kim, Y.S., Park, W.S.P. y Rhee, C.K. (1990). Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry 38, 651-656.
Klupšaitė, D. y Juodeikienė, G. (2015). Legume: composition, protein extraction and functional properties. A review. Chemical Technology 66, 5-12.
Kobayashi, Y., Mayer, S.G. y Park, J.W. (2017). FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions. Food Chemistry 226, 156-164.
Kong, J. y Shaoning, Y. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica 39, 549-559.
Kudre, T.G., Benjakul, S. y Kishimura, H. (2013). Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture 93, 2429–2436.
Kujur, M.J., Bilaiya, S.K. y Mehta, A.K. (2017). Character association study among components of green fodder yield in ricebean. Indian Journal of Agricultural Research 51, 370-374.
López, D.N., Ingrassia, R., Busti, P., Bonino, J., Delgado, J.F., Wagner, J., Wagner, J., Boeris, V. y Spelzini, D. (2018). Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds. LWT-Food Science and Technology 90, 396-402.
Malik, A.H., Holm, L. y Johansson, E. (2012) Soil and starter fertilizer and its effect on yield and protein composition of malting barley. Journal of Soil Science and Plant Nutrition 12, 835–849.
Marrugo-Ligardo, Y.A., Montero-Castillo, P.M. y Duran-Lengua, M. (2016). Evaluación nutricional de concentrados proteicos de Phaseolus lunatus y Vigna unguiculata. Información tecnológica 27, 107-114.
Martínez-Palma, N., Martínez-Ayala, A. y Dávila-Ortiz, G. (2015). Determination of antioxidant and chelating activity of protein hydrolysates from spirulina (Arthrospira maxima) obtained by simulated gastrointestinal digestion. Revista Mexicana de Ingeniería Química 14, 25-34.
Meersman, F., Smeller, L. y Heremans, K. (2002). Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophysical Journal 82, 2635-2644.
Mora-Escobedo, R., Robles-Ramírez, M.C., Ramón-Gallegos, E., y Reza-Alemán, R. 2009. Effect of Protein Hydrolysates from Germinated Soybean on Cancerous Cell of the Human Cervix: An In Vitro Study. Plant Foods for Human Nutrition 64, 271–278.
Ojwang, L.O., Banerjee, N., Noratto, G.D., Angel-Morales, G., Hachibamba, T., Awika, J. M. y Mertens-Talcott, S.U. (2015). Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation–modulation of microRNA 126. Food & function 6, 145-153.
Pan, Z., Cathcart, A. y Wang, D. (2005). Thermal and chemical treatments to improve adhesive property of rice bran. Industrial Crops and Products 22, 233-240.
Raso, S.W., Clark, P.L., Haase-Pettingell, C., King, J. y Thomas, G.J. (2001). Distinct cysteine sulfhydryl environments detected by analysis of Raman SH markers of Cys→ Ser mutant proteins. Journal of Molecular Biology 307, 899-911.
Rehman, Z.U. y Shah, W.H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food chemistry 91, 327-331.
Rygula, A., Majzner, K., Marzec, K.M., Kaczo, A., Pilarczyk, M. y Baranska, M. (2013). Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy 44, 1061-1076.
Saharan, K., Khetarpaul, N. y Bishnoi, S. (2001). HCl-extractability of minerals from ricebean and fababean: influence of domestic processing methods. Innovative Food Science & Emerging Technologies 2, 323–325.
Saikia, P., Sarkar, C.R. Borua, I. (1999). Chemical composition, antinutritional factorsand effect of cooking on nutritional quality of rice bean [Vigna umbellata (Thunb; Ohwi and Ohashi)]. Food Chemistry 67, 347–352,
Striolo, A., Favaro, A., Elvassore, N., Bertucco, A. y Di Noto, V. (2003). Evidence of conformational changes for protein films exposed to high-pressure CO2 by FT-IR spectroscopy. The Journal of Supercritical Fluids 27, 283-295.
Tavano, O.L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalalysis B: Enzymatic 90, 1-11.
Vanga, S.K., Singh, A., Kalkan, F., Gariepy, Y., Osart, V. y Raghavan, V. (2016). Effect of thermal and high electric fields on secondary structure of peanut protein. International Journal of Food Properties 19, 1259-1271.
Wang, W., Dia, V.P., Vasconez, M., de Mejía, E.G. y Nelson, R.L. (2008). Analysis of soybean protein-derived peptides and the effect of cultivar, environmental conditions, and processing on Lunasin concentration in soybean and soy products. Journal AOAC International 91, 936-946.
Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H. y Ren, G. (2012). Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. International Journal of Molecular Sciences, 13, 2707-2716.
Zhang, B.H., Fan, B., Li, M., Zhang, Y.H. y Gao, Z.H. (2018). Effects of thermal treatment on the properties of defatted soya bean flour and its adhesion to plywood. Royal Society Open Science 5, (1-11).
How to Cite
González-Cruz, L., Juárez-Goiz, J., Teniente-Martínez, G., Acosta-García, G., Flores-Martínez, N., & Bernardino-Nicanor, A. (2020). Structural changes in the proteins from two species of the genus vigna by effect of different treatments. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 333-347.
Food Engineering