pH-indicating properties and storage stability of a smart edible film based on nopal-mucilage/gellan gum and red cabbage anthocyanins

Keywords: Edible films, nopal mucilage, acidic-basic indicators, red cabbage anthocyanins´ differential colorimetry

Abstract

Nopal mucilage is a complex polysaccharide with great potential in the preparation of the films to food packaging. In this work, was develop a smart edible film with pH-indicating capabilities based on nopal mucilage, gellan gum, and red cabbage anthocyanins (70:20 w/w, and 10% respectively). Physical properties, appearance, and colorimetric functionality were characterized to pH range 2.5-5.9. Color stability, measured by CIELAB, was tested with different storage conditions and time and interpreted by differential tristimulus colorimetry. Results showed films whit uniform appearance, flexibility, easy-handling, and excellent color response within the pH range studied. The evolution of color difference (ΔE*ab) confirmed that the colorimetric functionality of films was stable at short storage periods (8 days) under natural conditions of sunlight and oxygen exposure, while a more extended storage period was affected. Results showed that the film is an excellent barrier and presents color changes triggered by pH changes.

References

Abdel-Aal, E.-S. M., Young, J. C., and Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry 54(13), 4696-4704. https://doi.org/10.1021/jf0606609

Allegra, A., Sortino, G., Inglese, P., Settanni, L., Todaro, A., and Gallotta, A. (2017). The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’fig (Ficus carica L.) fruit. Food packaging and shelf life 12, 135-141. https://doi.org/10.1016/j.fpsl.2017.04.010

ASTM. (2001). Standard test methods for water vapor transmission of materials. ASTM International: West, Conshohocken, PA.

Balbinot-Alfaro, E., Craveiro, D. V., Lima, K. O., Costa, H. L. G., Lopes, D. R., and Prentice, C. (2019). Intelligent Packaging with pH Indicator Potential. Food Engineering Reviews, 11(4), 235-244. https://doi.org/10.1007/s12393-019-09198-9

Calva-Estrada, S. J., Jiménez-Fernández, M., and Lugo-Cervantes, E. (2019). Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews 11(2), 78-92. https://doi.org/10.1007/s12393-019-09189-w

Cian, R. E., Salgado, P. R., Drago, S. R., González, R. J., and Mauri, A. N. (2014). Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chemistry 146, 6-14. https://doi.org/10.1016/j.foodchem.2013.08.133

Contreras-Padilla, M., Rodríguez-García, M. E., Gutiérrez-Cortez, E., del Carmen Valderrama-Bravo, M., Rojas-Molina, J. I., and Rivera-Muñoz, E. M. (2016). Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. European Polymer Journal 78, 226-234. https://doi.org/10.1016/j.eurpolymj.2016.03.024

Del-Valle, V., Hernández-Muñoz, P., Guarda, A., and Galotto, M. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry 91(4), 751-756. https://doi.org/10.1016/j.foodchem.2004.07.002

Dhall, R. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition 53(5), 435-450. https://doi.org/10.1080/10408398.2010.541568

Espino‐Díaz, M., De Jesús Ornelas‐Paz, J., Martínez‐Téllez, M. A., Santillán, C., Barbosa‐Cánovas, G. V., Zamudio‐Flores, P. B., and Olivas, G. I. (2010). Development and characterization of edible films based on mucilage of Opuntia ficus-indica (L.). Journal of Food Science 75(6), E347-E352. https://doi.org/10.1111/j.1750-3841.2010.01661.x

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., and Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science and Technology 22(6), 292-303. https://doi.org/10.1016/j.tifs.2011.02.004

Fitch-Vargas, P., Aguilar-Palazuelos, E., Vega-García, M., Zazueta-Morales, J., Calderón-Castro, A., Montoya-Rodríguez, A., Delgado-Nieblas, C., and Camacho-Hernández, I. (2019). Effect of a corn starch coating obtained by the combination of extrusion process and casting technique on the posharvest quality of tomato. Revista Mexicana de Ingeniería Química 18(3), 789-801. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Fitch

Gordillo, B., Rodríguez-Pulido, F. J., Escudero-Gilete, M. L., González-Miret, M. L., and Heredia, F. J. (2012). Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. Journal of Agricultural and Food Chemistry 60(11), 2896-2905.

https://doi.org/10.1021/jf2046202

Gordillo, B., Rodríguez-Pulido, F. J., González-Miret, M. L., Quijada-Morín, N., Rivas-Gonzalo, J. C., García-Estévez, I., Heredia, F. J., and Escribano-Bailón, M. T. (2015). Application of differential colorimetry to evaluate anthocyanin–flavonol–flavanol ternary copigmentation interactions in model solutions. Journal of Agricultural and Food Chemistry 63(35), 7645-7653. https://doi.org/10.1021/acs.jafc.5b00181

Hinojosa Rivera, M., and Reyes Melo, M. E. (2001). La rugosidad de las superficies: topometría. Ingenierías 4(11), 27-33.

Khoo, H. E., Azlan, A., Tang, S. T., and Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779

Kim, S. R. B., Choi, Y.-G., Kim, J.-Y., and Lim, S.-T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT-Food Science and Technology 64(1), 475-482. https://doi.org/10.1016/j.lwt.2015.05.009

López-García, F., Jiménez-Martínez, C., Guzmán-Lucero, D., Maciel-Cerda, A., Delgado-Macuil, R., Cabrero-Palomino, D., Terrés-Rojas, E., and Arzate-Vázquez, I. (2017). Physical and chemical characterization of a biopolymer film made with corn starch and nopal xoconostle (Opuntia joconsotle) mucilage. Revista Mexicana de Ingeniería Química 16(1), 147-158. https://www.redalyc.org/pdf/620/62049878015.pdf

Martínez, J., Melgosa, M., Pérez, M., Hita, E., and Negueruela, A. (2001). Note. Visual and instrumental color evaluation in red wines. Food Science and Technology International 7(5), 439-444. https://doi.org/10.1106/VFAT-5REN-1WK2-5JGQ

Musso, Y. S., Salgado, P. R., and Mauri, A. N. (2016). Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids 61, 523-530. https://doi.org/10.1016/j.foodhyd.2016.06.013

Pereira Jr, V. A., de Arruda, I. N. Q., and Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids 43, 180-188. https://doi.org/10.1016/j.foodhyd.2014.05.014

Pérez-Gallardo, A., Bello-Pérez, L. A., García-Almendárez, B., Montejano‐Gaitán, G., Barbosa‐Cánovas, G., and Regalado, C. (2012). Effect of structural characteristics of modified waxy corn starches on rheological properties, film-forming solutions, and on water vapor permeability, solubility, and opacity of films. Starch-Stärke 64(1), 27-36. https://doi.org/10.1002/star.201100042

Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., and Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate polymers 156, 193-201. https://doi.org/10.1016/j.carbpol.2016.09.027

Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J.-L., and Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production 172, 3398-3409. https://doi.org/10.1016/j.jclepro.2017.11.075

Schanda, J. (2007). Colorimetry: understanding the CIE system: John Wiley and Sons.

Silva-Pereira, M. C., Teixeira, J. A., Pereira-Júnior, V. A., and Stefani, R. (2015). Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Science and Technology 61(1), 258-262. https://doi.org/10.1016/j.lwt.2014.11.041

Treviño-Garza, M., Yañez-Echeverría, S., García, S., Mora-Zúñiga, A., and Arévalo-Niño, K. (2020). Physico-mechanical, barrier and antimicrobial properties of linseed mucilague films incorporated with H. virginiana extract. Revista Mexicana de Ingeniería Química 19(2), 983-996. DOI: https://doi.org/10.24275/rmiq/Bio872

Yoshida, C. M. P., Maciel, V. B. V., Mendonça, M. E. D., and Franco, T. T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. LWT-Food Science and Technology 55(1), 83-89. https://doi.org/10.1016/j.lwt.2013.09.015

Published
2020-07-01
How to Cite
Solano-Doblado, L., Heredia, F., Gordillo-Arrobas, B., Davila-Ortiz, G., Alamilla-Beltran, L., Maciel-Cerda, A., & Jiménez-Martínez, C. (2020). pH-indicating properties and storage stability of a smart edible film based on nopal-mucilage/gellan gum and red cabbage anthocyanins. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 363-374. https://doi.org/10.24275/rmiq/Alim1583
Section
Food Engineering

Most read articles by the same author(s)

1 2 3 > >>