Biosynthesis, optimization and characterization of ZnO nanoparticles using Bacillus cereus MN181367 and their antimicrobial activity against multidrug resistant bacteria

  • M. Iqtedar
  • H. Riaz
  • A. Kaleem
  • R. Abdullah
  • A. Aihetasham
  • S. Naz
  • S. Sharif
Keywords: Zinc Oxide NPs, Bacillus cereus, SEM, FTIR, ZnO NPs antimicrobial activity

Abstract

Zinc oxide nanoparticles ZnO NPs due to their unique properties have diverse applications in different fields of life. Bacterial synthesis of ZnO NPs is an eco-friendly, simple and inexpensive way. In this study, among eighteen bacterial isolates, eight confirmed ZnO NPs synthesis. On the basis of sharp absorption peak at 354 nm, growth conditions for gram positive Bacillus cereus H-SC1 were further optimized. Under different optimum parameters such as incubation temperature 37ºC, pH 9, inorganic salt (NH2)2SO4, SDS as surfactant, substrate (ZnSO4.7H2O) concentration 0.01 M and reaction time of two days under light condition, the ZnO NPs obtained had sharp peak at 352 nm and wide band gap of 3.5 eV. FTIR spectra indicated presence of amines and carbonyl groups as stabilizing agents. The scanning electron micrograph showed irregular shaped ZnO NPs and Zeta sizer indicated size ranging from 58.77-63.3 nm with PDI of 0.529. ZnO NPs exhibited negative zeta potential -7.39 mV. The antimicrobial assay by well diffusion method showed direct relationship of antibacterial activity with concentration of nanoparticles against Escherichia coli, Staphylococcus aureus and Salmonella typhi. Conclusively, bio-transformed ZnO NPs have great potential as an alternative to conventional antibiotics and as drug delivery tool.

References

Abdelhakim, H. K., El‐Sayed, E. R., and Rashidi, F. B. (2020). Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. Journal of Applied Microbiology 128, 1634-1646. https://doi.org/10.1111/jam.14581

Awwad, A. M., Amer, M. W., Salem, N. M., and Abdeen, A. O. (2020). Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chemistry International 6, 151-159. https://doi.org/10.5281/zenodo.3559520

Bae, C. H., Nam, S. H. and Park, S. M. (2002). Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Applied Surface Science 197, 628-634. https://doi.org/10.1016/S0169-4332(02)00430-0

Bhattacharya R, Mukherjee P. (2008). Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews 60, 1289-1306. https://doi.org/10.1016/j.addr.2008.03.013

Busi, S., Rajkumari, J., Pattnaik, S., Parasuraman, P. and Hnamte, S. (2016). Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. The Journal of Microbiology, Biotechnology and Food Sciences 5, 407-411. https://doi.org/ 10.15414/jmbfs.2016.5.5.407-411

Clogston, J. D. and Patri, A. K. (2011). Zeta potential measurement. Methods in Molecular Biology 697, 63-70. https://doi.org/10.1007/978-1-60327-198-1_6

Dalai, S., Pakrashi, S., Kumar, R. S., Chandrasekaran, N. and Mukherjee, A. (2012). A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicology Research 1, 116-130. https://doi.org/10.1039/c2tx00012a

Datta, A., Patra, C., Bharadwaj, H., Kaur, S., Dimri, N. and Khajuria, R. (2017). Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. Journal of Biotechnology and Biomaterials 7, 1-5. https://doi.org/10.4172/2155-952X.1000271

De Silva, C., Noor, A. M., Abd Karim, M. M., Gunasekaran, B., Abd Gani, S., Cabrera, M. A., and Ahmad, S. A. (2020). The green synthesis and characterisation of silver nanoparticles from Serratia spp. Revista Mexicana de Ingeniería Química 19, 1327-1339. https://doi.org/10.24275/rmiq/Bio1059

Dobrucka, R. and Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences 23, 517-523. https://doi.org/10.1016/j.sjbs.2015.05.016

Duncan, D.B., 1955. Multiple range and multiple F tests. Biometrics 11,1-42. https://doi.org/10.2307/3001478

El Filali, B., Torchynska, T. V., Cano, A. D., and Rodriguez, M. M. (2015). Structural and Raman scattering studies of ZnO Cu nanocrystals grown by spray pyrolysis. Revista Mexicana de Ingeniería Química 14, 781-788. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S166527382015000300020&lng=es&nrm=iso

El Waseif, A. (2019). Cytotoxicity and antimicrobial activity of naturally and chemically synthesized zinc oxide nanoparticles. Journal of The Arab Society for Medical Research 14, 42-51. https://doi.org/10.4103/jasmr.jasmr_8_19

El Waseif, A. A., El Ghwas, D. E. and El Diwany, A. I. (2017). Zinc oxide nanoparticles formation, characterization and biological approach. Journal of Innovations in Pharmaceutical and Biological Sciences 4, 39-43. http://www.jipbs.com/VolumeArticles/FullTextPDF/286_JIPBSV4I107

Fernando, S. S. N., Gunasekara, T. and Holton, J. (2018). Antimicrobial nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases 8, 2-7. http://doi.org/10.4038/sljid.v8i1.8167

Gupta, M., Tomar, R. S., Kaushik, S., Sharma, D. and Mishra, R. K. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology 9, 2030-2041. https://doi.org/10.3389/fmicb.2018.02030

Hasan, M. M., Rasal-Monir, M., Biswas, S., Jahan, M. R., Usha, M., and Hasan, F. (2019). Isolation and screening of Antagonistic Bacteria to Colletotrichum musae. IOSR Journal of Agriculture and Veterinary Science 12, 1-7. https://doi.org/10.9790/2380-1208010107

Hassan B. H., Talib, R. A., Sukor, R., Othman, S. H., and Ariffin, H. (2020). Effect of synthesis temperature on the size of ZnO nanoparticles derived from pineapple peel extract and antibacterial activity of ZnO–starch nanocomposite films. Nanomaterials 10, 1-15. https://doi.org/10.3390/nano10061061

Hayeemasae, N., Rathnayake, W. and Ismail, H. (2018). Effect of ZnO nanoparticles on the simultaneous improvement in curing and mechanical properties of NR/Recycled EPDM blends. Progress in Rubber Plastics and Recycling Technology 34, 1-18. https://doi.org/10.1177/147776061803400101

He, L., Liu, Y., Mustapha, A. and Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research 166, 207-215. https://doi.org/10.1016/j.micres.2010.03.003

Ibrahem, E. J., Thalij, K. M., Saleh, M. K. and Badawy, A. S. (2017). Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity. American Journal of Biochemistry and Biotechnology 13, 63-69. https://doi.org/10.3844/ajbbsp.2017.63.69

Jaidev, L. and Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and surfaces B: Biointerfaces 81, 430-433. https://doi.org/10.1016/j.colsurfb.2010.07.033

Jamdagni, P., Khatri, P. and Rana, J. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbortristis and their antifungal activity. Journal of King Saud University Science 30, 168-175. https://doi.org/10.1016/j.jksus.2016.10.002

Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L. and Rao, K. V. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 90, 78-84. https://doi.org/10.1016/j.saa.2012.01.006

Jiang, J., Pi, J. and Cai, J. (2018). The Advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications 12, 1-18. https://doi.org/10.1155/2018/1062562

Kalaiselvi, A., Roopan, S. M., Madhumitha, G., Ramalingam, C., Al Dhabi, N. A. and Arasu, M. V. (2016). Catharanthus roseus mediated zinc oxide nanoparticles against photocatalytic application of phenol red under UV@365 nm. Current Science 111, 1811-1819. https://doi.org/10.18520/cs/v111/i11/1811-1815

Karadayi, M., Gulluce, M. and Demir, A. Y. (2017). Isolation and molecular characterization of bacteria that can be used in the green synthesis of ZnO nanoparticles. Journal of Molecular Biology and Biotechnology 1, 16-20. http://www.nobel.gen.tr/

Kavitha, S., Dhamodaran, M., Prasad, R. and Ganesan, M. (2017). Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. International Nano Letters 7, 141-147. https://doi.org/10.1007/s40089-017-0207-1

Kim, S., Lee, S. Y. and Cho, H. J. (2017). Doxorubicin wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials 7, 354-362. https://doi.org/10.3390/nano7110354

Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics 9, 299-306. http://10.1093/bib/bbn017

Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A. and Mishra, S. (2014). Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: Multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. Journal of Photochemistry and Photobiology B: Biology 140, 194-204. https://doi.org/10.1016/j.jphotobiol.2014.08.001

Lakshmi, P., Mahesh, M. and Deepthi, J. (2012). Development and validation of nabumetone by isocratic RP-HPLC method. International Research Journal of Pharmaceutical and Applied Scienecs 2, 92-98. https://pdfs.semantischolar.org/8eb0/958e4f96c65bb36ac21f781d1491dd08c77e

Li, X., Xu, H., Chen, Z. S. and Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials 16, 1-16. https://doi.org/10.1155/2011/270974

Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q. and Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology 107, 1193-1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

Lopez-Cuenca, S., Aguilar-Martinez, J., Rabelero-Velasco, M., Hernandez-Ibarra, F. J., Lopez-Ureta, L. C., and Pedroza-Toscano, M. A. (2019). Spheroidal zinc oxide nanoparticles synthesized by semicontinuous precipitation method at low temperatures. Revista Mexicana de Ingeniería Química 18, 1179-1187. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Lopez

Maruthupandy, M., Anand, M., Maduraiveeran, G., Suresh, S., Beevi, A. S. H. and Priya, R. J. (2016). Investigation on the electrical conductivity of ZnO nanoparticles decorated bacterial nanowires. Advances in Natural Sciences: Nanoscience and Nanotechnology 7, 1-9. https://doi.org/10.1088/2043-6262/7/4/045011

McFarland, J. (1907). The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 49, 1176-1178. http://dx.doi.org/10.1001/jama.1907.25320140022001f

Meruvu, H., Vangalapati, M., Chippada, S. C. and Bammidi, S. R. (2011). Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasayan Journal of Chemistry 4, 217-222. http://rasayanjournal.co.in/vol-4/issue-1/33.pdf

Mohammadi, F. M. and Ghasemi, N. (2018). Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. Journal of Nanostructure in Chemistry 8, 93-102. https://doi.org/10.1007/s40097-018-0257-6

Morsy, S. M. (2014). Role of surfactants in nanotechnology and their applications. International Journal of Current Microbiology Applied Science 3, 237-260. https://www.ijcmas.com/vol-3-5/Salwa%20M.I.%20Morsy.pdf

Nagarajan, S. and Kuppusamy, K. A. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of nanobiotechnology 11, 39. https://doi.org/10.1186/1477-3155-11-39

Newman, M. D., Stotland, M. and Ellis, J. I. (2009). The safety of nanosized particles in titanium dioxide and zinc oxide based sunscreens. Journal of the American Academy of Dermatology 61, 685-692. https://doi.org/10.1016/j.jaad.2009.02.051

Nilavukkarasi, M., Vijayakumar, S., and Prathipkumar, S. (2020). Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Materials Science for Energy Technologies 3, 335-343. https://doi.org/10.1016/j.mset.2019.12.004

Ovais, M., Khalil, A., Ayaz, M., Ahmad, I., Nethi, S. and Mukherjee, S. (2018). Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. International Journal of Molecular Sciences 19, 4100-4110. https://doi.org/10.3390/ijms19124100

Ovando-Medina, V., Farias-Cepeda, L., Perez-Aguilar, N., Rivera de la Rosa, J., Martinez-Gutierrez, H., Romero-Galarza, A., Cervantes-Gonzalez, E., and Cayetano-Castro, N. (2018). Facile synthesis of low band gap ZnO microstructures. Revista Mexicana De Ingeniería Química, 17, 455-462. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando

Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., and Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters 90, 213902. https://doi.org/10.1063/1.2742324

Roopan, S. M.,Madhumitha, G.,Rahuman, A. A.,Kamaraj, C.,Bharathi, A. and Surendra, T. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products 43, 631-635. https://doi.org/10.1016/j.indcrop.2012.08.013

Ryu, H. J., Seo, M. Y., Jung, S. K., Maeng, E. H., Lee, S. Y., Jang, D. H., Lee, T. J., Jo, K. Y., Kim, Y. R., Cho, K. B., Kim, M. K., Lee, B. J., and Son, S. W. (2014). Zinc oxide nanoparticles: a 90-day repeated-dose dermal toxicity study in rats. International Journal of Nanomedicine 9, 137-144. https://doi.org/10.2147/IJN.S57930

Sahu, D., Kannan, G. M., Vijayaraghavan, R., Anand, T., and Khanum, F. (2013). Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicology 2013, 1-8. https://doi.org/10.1155/2013/316075

Salman, J. A. S., Kadhim, A. A. and Haider, A. J. (2018). Biosynthesis, characterization and antibacterial effect of ZnO nanoparticles synthesized by Lactobacillus Spp. Journal of Global Pharmaceutical Technology 10, 348-355. https://pdfs.semanticscholar.org/e810/4f909eac5477a2b2bf4683708fbbcce6092b.pdf

Sastry, A., Aamanchi, R. K., Prasad, C. S. R. L. and Murty, B. (2013). Large scale green synthesis of Cu nanoparticles. Environmental Chemistry Letters 11, 183-187. https://doi.org/10.1007/s10311-012-0395-x

Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of Microbiological Methods 54, 177-182. https://doi.org/10.1016/S0167-7012(03)00037-X

Schluter, M., Hentzel, T., Suarez, C., Koch, M., Lorenz, W. G., Bohm, L., During, R.A., Koinig, K. A. and Bunge, M. (2014). Synthesis of novel palladium (0) nanocatalysts by microorganisms from heavy metal influenced high alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 117, 462-470. https://doi.org/10.1016/j.chemosphere.2014.07.030

Shamsuzzaman, Mashrai, A., Khanam, H. and Aljawfi, R. N. (2017). Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arabian Journal of Chemistry 10, S1530-S1536. https://doi.org/10.1016/j.arabjc.2013.05.004

Siddiqi, K. S., ur Rahman, A., and Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 13, 1-13. https://doi.org/ 10.1186/s11671-018-2532-3

Singh, J., Kaur, S., Kaur, G., Basu, S. and Rawat, M. (2019). Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green Processing and Synthesis 8, 272-280. https://doi.org/10.1515/gps-2018-0084

Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W. and Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology 84, 741-749. https://doi.org/10.1007/s00253-009-2032-6

Sundaraselvan, G. and Quine, S. D. (2017). Green synthesis of zinc oxide nanoparticles using seed extract of Murraya koenigii and their antimicrobial activity against some human pathogens. Journal of Nanoscience and Technology 4, 289-292. https://www.jacsdirectory.com/journal-of-nanoscience-and- technology/admin/issues/20171130015257_301%20JNST17087%20Published.pdf

Taranath, T. C. and Patil, B. N. (2016). Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis. International Journal of Mycobacteriology 5, 197-204. https://doi.org/10.1016/j.ijmyco.2016.03.004

Umamaheswari, A., Lakshmana Prabu, S. and Puratchikody, A. (2018). Biosynthesis of zinc oxide nanoparticle: A review on greener approach. Medcrave Online Journal of Bioequivalence and Bioavailability 5, 151-154. https://doi.org/10.15406/mojbb.2018.05.00096

Umar, H., Kavaz, D. and Rizaner, N. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine 14, 87-100. https://doi.org/10.2147/IJN.S186888

Wang, R., Xin, J. and Tao, X. (2005). UV blocking property of dumbbell shaped ZnO crystallites on cotton fabrics. Inorganic Chemistry 44, 3926-3930. https://doi.org/10.1021/ic0503176

Wang, Z. L. (2008). Splendid one dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. American Chemistry Society: Nanoscience 2, 1987-1992. https://doi.org/10.1021/nn800631r

Xie, Y., He, Y., Irwin, P. L., Jin, T. and Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology 77, 2325-2331. https://doi.org/10.1128/AEM.02149-10

Yusof, H. M., Mohamad, R., and Zaidan, U. H. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology 10, 57. https://doi.org/10.1186/s40104-019-0368-z

Zhang, X., Yan, S., Tyagi, R. and Surampalli, R. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82, 489-494. https://doi.org/10.1016/j.chemosphere.2010.10.023

Zhang, Z. Y. and Xiong, H. M. (2015). Photoluminescent ZnO nanoparticles and their biological applications. Materials 8, 3101-3127. https://doi.org/10.3390/ma8063101

Zheng, Y., Wang, Z., Peng, F., and Fu, L. (2017). Biosynthesis of silver nanoparticles by Plectranthus amboinicus leaf extract and their catalytic activity towards methylene blue degradation. Revista Mexicana de Ingeniería Química 16, 41-45. https://www.redalyc.org/articulo.oa?id=62049878005

Published
2020-06-29
How to Cite
Iqtedar, M., Riaz, H., Kaleem, A., Abdullah, R., Aihetasham, A., Naz, S., & Sharif, S. (2020). Biosynthesis, optimization and characterization of ZnO nanoparticles using Bacillus cereus MN181367 and their antimicrobial activity against multidrug resistant bacteria. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 253-266. https://doi.org/10.24275/rmiq/Bio1605
Section
Biotechnology

Most read articles by the same author(s)