Evaluation of the hydroconversion reactions of Jatropha curcas L. oil on hydrodesulfuration catalysts

  • J. García-Dávila
  • E. Ortega-Sánchez
  • F.S. Sandoval-Sosa
  • J. Dinorín-Tellez
  • L. Sánchez-Minutti
  • A.L. Martinez-Ayala
Keywords: Biofuels, Hydroconversion, Jatropha curcas, Bifunctional catalyst, Catalytic selectivity


This work evaluated the activity of two commercial catalysts Ni-Mo/Al2O3 and Co-Mo/Al2O3 for the hydrodesulfurization process (HDS) developed by the Mexican Petroleum Institute (IMP). The process is performed on Jatropha curcas oil, due to its excellent flow properties at room temperature, allowing its mixing with commercial hydrocarbon cuts. Catalysts have the characteristic of the hydrodeoxygenation reactions of fatty acids present in J. curcas vegetable oil for the generation of chemically similar hydrocarbons to those of fossil origin.

The following conditions were evaluated: pressure of 145 -400 psia, temperature from 300 to 390 °C and residence times of 0.5 and 2.0 min (WHSH -60 h-1 and 30 h-1). HDS process activity with pure J. curcas oil and 20% mixture with n-hexadecano as a model molecule of HDS hydrocarbons. The Ni-Mo/Al2O3-type catalyst showed increased conversion of triglycerides and fatty acids to linear-chain hydrocarbons, being greater than 85%, compared to the Co-Mo/Al2O3-based catalyst, which had a conversion of close to 82%. Catalytic activity was also observed to be very temperature-dependent.



Berenblyum, A. S., Danyushevsky, V. Y., Katsman, E. A., Podoplelova, T. A. and Flid, V. R. (2010). Production of engine fuels from inedible vegetable oils and fats. Petroleum Chemistry 50, 305–311. https://doi.org/10.1134/S0965544110040080

Bezergianni, S., Kalogianni, A. and Dimitriadis, A. (2012). Catalyst evaluation for waste cooking oil hydroprocessing. Fuel 93, 638–641. https://doi.org/10.1016/j.fuel.2011.08.053

Bezergianni, S. and Kalogianni, A. (2009). Hydrocracking of used cooking oil for biofuels production. Bioresource Technology 100, 3927–3932. https://doi.org/10.1016/j.biortech.2009.03.039

Bezergianni, S., Kalogianni, A. and Vasalos, I. A. (2009). Hydrocracking of vacuum gas oil-vegetable oil mixtures for biofuels production. Bioresource Technology 100, 3036–3042. https://doi.org/10.1016/j.biortech.2009.01.018

Cao, X., Li, L., Shitao, Y., Liu, S., Hailong, Y., Qiong, W. and Ragauskas, A. J. (2019). Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst. Journal of Analytical and Applied Pyrolysis 138, 137–144. https://doi.org/10.1016/j.jaap.2018.12.017

Díaz de León-Cabrero, M., and M.A. Sánchez-Castillo. (2016). Basis for Triglycerides and Phospholipids conversion into Green fuels using mesoporous catalysts. Rev. Mex. Ing. Quim. 15, 111-128.

Donnis, B., Egeberg, R. G., Blom, P. and Knudsen, K. G. (2009). Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics in Catalysis 52, 229–240. https://doi.org/10.1007/s11244-008-9159-z

Gupta, R. B. and Demirbas, A. (2010). Gasoline, diesel and ethanol biofuels from grasses and plants. Editorial Cambridge University Press, USA.

Hancsók, J., Krár, M., Magyar, S., Boda, L., Holló, A. and Kalló, D. (2007). Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3. Microporous and Mesoporous Materials 101, 148-152. https://doi.org/10.1016/j.micromeso.2006.12.012

Huber, G. W. and Corma, A. (2007). Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition 46, 7184-7201. https://doi.org/10.1002/anie.200604504

Huber, G. W., O’Connor, P. and Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General 329, 120–129. https://doi.org/10.1016/j.apcata.2007.07.002

Huber, G. W., Iborra, S. and Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews 106, 4044-4098 https://doi.org/10.1021/cr068360d

Islam, A., Taufiq-Yap, Y.H., Ravindra, P., Teo, S.H., Sivasangar, S. and Chan, E.S. (2015). Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy 89, 965-973. https://doi.org/10.1016/j.energy.2015.06.036

Islam, A., Taufiq-Yap, Y. H., Chu, C. M., Ravindra, P. and Chan, E. S. (2013). Transesterification of palm oil using KF and NaNO3 catalysts supported onspherical millimetric γ-Al2O3. Renewable Energy 59, 23–29. https://doi.org/10.1016/j.renene.2013.01.051

Kubičková, I., Snåre, M., Eränen, K., Mäki-Arvela, P. and Murzin, D. Y. (2005). Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catalysis Today 106, 197–200. https://doi.org/10.1016/j.cattod.2005.07.188

Kubička, D., Šimáček, P. and Žilková, N. (2009). Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Topics in Catalysis 52, 161–168. https://doi.org/10.1007/s11244-008-9145-5

Kubičková, I. and Kubička, D. (2010). Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review. Waste and Biomass Valorization 1, 293–308. https://doi.org/10.1007/s12649-010-9032-8

Martínez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G. and Becker, K. (2006). Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food chemistry 96, 80-89. https://doi.org/10.1016/j.foodchem.2005.01.059

Negm, N. A., Zahran, M. K., Abd Elshafy, M. R. and Aiad, I. A. (2018). Transformation of Jatropha oil to biofuel using transition metal salts as heterogeneous catalysts. Journal of Molecular Liquids 256, 16–21. https://doi.org/10.1016/j.molliq.2018.02.022

Ooi, X. Y., Oi, L. E., Choo, M. Y., Ong, H. C., Lee, H. V., Show, P. L., Lin Y.C., and Juan, J. C. (2019). Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over mesoporous Al2O3-TiO2 catalyst. Fuel Processing Technology 194, 106120. https://doi.org/10.1016/j.fuproc.2019.106120

Pinho, A. D. R., De Almeida, M. B. B., Mendes, F. L., Ximenes, V. L. and Casavechia, L. C. (2015). Co-processing raw bio-oil and gasoil in an FCC Unit. Fuel Processing Technology 131, 159–166. https://doi.org/10.1016/j.fuproc.2014.11.008

Ramírez-Corredores, M. M. and Borole, A. P. (2011). Biocatalysis in oil refining. Editorial Elsevier, London.

Sacramento, J., Romero, G., Cortés, E., Pech, E. and Blanco, S. (2010). Diagnóstico del desarrollo de biorrefinerías en México. Rev. Mex. Ing. Quim. 9, 261–283.

Sánchez-Olmos, L.A., M. Sánchez-Cárdenas, K. Sathish-Kumar, D.N. Tirado-Gonzalez, V.A. Maldonado-Ruelas, and R.A. Ortiz-Medina. (2020) Effect of the sulfonated catalyst in obtaining biodiesel when used in a diesel engine with controlled tests. Rev. Mex. Ing. Quim. 19, 969-982. https://doi.org/10.24275/rmiq/IE831

Sankaranarayanan, T. M., Banu, M., Pandurangan, A. and Sivasanker, S. (2011). Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites. Bioresource Technology 102, 10717–10723. https://doi.org/10.1016/j.biortech.2011.08.127

Syazwani, O. N., Teo, S. H., Islam, A. and Taufiq-Yap, Y. H. (2017). Transesterification activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Safety and Environmental Protection 105, 303–315. https://doi.org/10.1016/j.psep.2016.11.011

Teo, S. H., Islam, A., Chan, E. S., Thomas Choong, S. Y., Alharthi, N. H., Taufiq-Yap, Y. H. and Awual, M. R. (2019). Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of Cleaner Production 208, 816–826. https://doi.org/10.1016/j.jclepro.2018.10.107

Teo, S. H., Islam, A., Ng, C. H., Mansir, N., Ma, T., Thomas Choong, S. Y. and Taufiq-Yap, Y. H. (2018). Methoxy-functionalized mesostructured stable carbon catalysts for effective biodiesel production from non-edible feedstock. Chemical Engineering Journal 334, 1851–1868. https://doi.org/10.1016/j.cej.2017.11.110

Teo, S. H., Islam, A., Masoumi, H. R. F., Taufiq-Yap, Y. H., Janaun, J., Chan, E. S. and khaleque, M. A. (2017). Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renewable Energy 111, 892–905. https://doi.org/10.1016/j.renene.2017.04.039

Vaknin, Y., Ghanim, M., Samra, S., Dvash, L., Hendelsman, E., Eisikowitch, D. and Samocha, Y. (2011). Predicting Jatropha curcas seed-oil content, oil composition and protein content using near-infrared spectroscopy—A quick and non-destructive method. Industrial Crops and Products 34, 1029-1034. https://doi.org/10.1016/j.indcrop.2011.03.011

Zambrano J., J. Zambrano, S. Kovshov, and E. Lyubin. (2019). Correlation of Viscosities for Biofuels mixtures. Rev. Mex. Ing. Quim. 18, 759-777. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Zambrano

How to Cite
García-Dávila, J., Ortega-Sánchez, E., Sandoval-Sosa, F., Dinorín-Tellez, J., Sánchez-Minutti, L., & Martinez-Ayala, A. (2020). Evaluation of the hydroconversion reactions of Jatropha curcas L. oil on hydrodesulfuration catalysts. Revista Mexicana De Ingeniería Química, 20(1), 135-146. https://doi.org/10.24275/rmiq/Bio1611