Wet processing coffee waste as an alternative to produce extracts with antifungal activity: In vitro and in vivo valorization

  • C. Lobato-Calleros Universidad Autónoma Chapingo
  • S. Alvarado-Ambriz Universidad Autónoma Metropolitana-Iztapalapa
  • L. Hernández-Rodríguez Universidad Autónoma Chapingo
  • E.J. Vernon-Carter Universidad Autónoma Metropolitana -Iztapalapa
Keywords: wet coffee benefit waste; ethanolic extract; antioxidant activity; in vitro antifungal activity; in vivo antifungal activity


Wet coffee waste (WCW) generated by the wet benefit process of the coffee, is mainly made up of coffee pulp and husk, and has been scarcely studied and reutilized. Therefore, the aim of this work was to investigate the in vitro and in vivo antifungal activity of an optimized WCW ethanolic-extract (OE) obtained by ultrasonication (amplitude 70%, sonication time 45 min). OE had total phenolic content of 33.8 mg gallic acid equivalents/g and antioxidant activity of 1790.1 µmol Trolox equivalents/g. OE showed a potent in vitro antifungal activity against A. niger, B. cinerea and R. stolonifer equivalent or superior to that of commercial synthetic carbendazim. Strawberries were wounded and inoculated with the three fungi for in vivo assays. After 5 d of inoculation, percentage of wounds presenting mold growth was of 16.7% (400 µg/mL of OE) and 38.2% (1000 µg/mL of carbendazim) for A. niger, and of 36.1% for B. cinerea and of 50.12% for R. stolonifer (2000 µg/mL of OE) compared to the 38.2% and 51.2% (1000 µg/mL of carbendazim), respectively. The efficient antifungal activity of OE can be mainly attributed to its majoritarian compounds chlorogenic acid (14.19 mg/g) and caffeic acid (1.18 mg/g), which represented 89.83% of the identified.


Al-Dhabi, N. A., Ponmurugan, K., & Jeganathan, P. M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry 34, 206-213.

Aguilar-González, A. E., Palou, E., & López-Malo, A. (2015). Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science & Emerging Technologies 32, 181-185.

Ahmad, H., & Matsubara, Y. I. (2019). Antifungal effect of Lamiaceae herb water extracts against Fusarium root rot in Asparagus. Journal of Plant Diseases and Protection, 1-8.

Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta 88, 544-552.

AOAC (2005). Official Methods of Analysis (18th edition). Maryland: Association of Official Analytical, Chemists International.

Aqueveque, P., Céspedes, C. L., Becerra, J., Aranda, M., & Sterner, O. (2017). Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food and Chemical Toxicology 109, 1048-1054.

Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. Journal of Food Engineering 199, 1-8.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1), 25-30.

Bravo, J., Juániz, I., Monente, C., Caemmerer, B., Kroh, L. W., De Peña, M. P., & Cid, C. (2012). Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. Journal of Agricultural and Food Chemistry 60(51), 12565-12573.

Can, O. T., Gengec, E., & Kobya, M. (2019). TOC and COD removal from instant coffee and coffee products production wastewater by chemical coagulation assisted electrooxidation. Journal of Water Process Engineering 28, 28-35.

Chanakya, H. N., & De Alwis, A. A. P. (2004). Environmental issues and management in primary coffee processing. Process Safety and Environmental Protection 82(4), 291-300.

Chen, J., Shen, Y., Chen, C., & Wan, C. (2019). Inhibition of key citrus postharvest fungal strains by plant extracts in vitro and in vivo: A review. Plants 8(2), 26.

Chen, W., Wang, W. P., Zhang, H. S., & Huang, Q. (2012). Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydrate Polymers 87(1), 614-619.

Choi, B., & Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology 26(4), 921-927.

Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products 50, 77-87.

de Rodríguez, D. J., Salas-Méndez, E. D. J., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, M. L. V., Sáenz-Galindo, A., Gonzalez-Morales, M. L., Flores-Lopez, J. A., Villarreal-Quintanilla, F. M., Peña-Ramos, D. A., & Carrillo-Lomelí, D. A. (2017). Antifungal activity in vitro of ethanol and aqueous extracts of leaves and branches of Flourensia spp. against postharvest fungi. Industrial Crops and Products 107, 499–508.

Donlao, N., & Ogawa, Y. (2018). Impacts of processing conditions on digestive recovery of polyphenolic compounds and stability of the antioxidant activity of green tea infusion during in vitro gastrointestinal digestion. LWT-Food Science and Technology 89, 648-656.

Do, P. M. N., Hoang, Q. T. T., & Le, A. T. H. (2019). Optimization of conditions of extraction process from coffee cherry pulp (cascara) and application to drinking water products with antioxidant activity. Vietnam Journal of Science and Technology 57(3B), 26.

Duangjai, A., Suphrom, N., Wungrath, J., Ontawong, A., Nuengchamnong, N., & Yosboonruang, A. (2016). Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research 5(4), 324-331.

Elfirta, R. R., Falah, S., Andrianto, D., & Lastini, T. (2018). Identification of active compounds and antifungal activity of Toona sinensis leaves fractions against wood rot fungi. Biodiversitas 19(4), 1313-1318.

Esquivel, P., & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International 46(2), 488-495.

Feliziani, E., & Romanazzi, G. (2016). Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research 6(1), 47-63.
Ghosh, P., Fawcett, D., Sharma, S., & Poinern, G. (2017). Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 10, 852.

Guédez, C., Cañizález, L., Castillo, C., & Olivar, R. (2009). Antagonist effect of Trichoderma harzianum over some strawberry (Fragaria spp.) post harvesting fungi pathogens. Revista de la Sociedad Venezolana de Microbiologia 29(1), 34-38.

Hečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry 129(3), 991-1000.

Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., & Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry 221, 969-975.

International Coffee Organization. Coffee Market Report. (2020). http://www.ico.org/es/Market-Report-19-20-c.asp, (2017). Accessed 2 February 2020.

Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling 128, 110-117.

Jeszka-Skowron, M., Sentkowska, A., Pyrzyńska, K., & De Peña, M. P. (2016). Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. European Food Research and Technology 242(8), 1403-1409.

Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga, C., & García-Salinas, C. (2015). Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Research International 70, 151-157.

Khalid, U., Khan, S. N., Farooq, S., Siddique, M., Siddique, S., & Khan, S. (2019). Fungi associated with postharvest quality deterioration of strawberry at green markets of Lahore. Mycopath 15, 67–69.

Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 125(2), 288-306.

Liu, J., Lin, S., Wang, Z., Wang, C., Wang, E., Zhang, Y., & Liu, J. (2011). Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food and Bioproducts Processing 89(4), 333-339.

Londoño-Hernandez, L., Ruiz, H. A., Ramírez, T. C., Ascacio, J. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2020). Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology 23, 101467.

Magalhães, L. M., Machado, S., Segundo, M. A., Lopes, J. A., & Páscoa, R. N. (2016). Rapid assessment of bioactive phenolics and methylxanthines in spent coffee grounds by FT-NIR spectroscopy. Talanta 147, 460-467.

Magoni, C., Bruni, I., Guzzetti, L., Dell'Agli, M., Sangiovanni, E., Piazza, S., Regonesi, M. E., Maldini, M., Spezzano, R., Carusso, D., & Labra, M (2018). Valorizing coffee pulp by-products as anti-inflammatory ingredient of food supplements acting on IL-8 release. Food Research International 112, 129-135.

Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., & de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology 140, 30-35.

Martínez-Ruíz, C., Lozano, G., Roldan-Cruz, C., Meraz, M., & Rodríguez-Huezo, M. E. (2018). Evolution of antioxidant activity in heated coffee brew. Revista Mexicana de Ingeniería Química 17(2), 613-619.

Martins, A. F., Pereira, A. G., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2011). Characterization of polyelectrolytes complexes based on N, N, N-trimethyl chitosan/heparin prepared at different pH conditions. Carbohydrate Polymers 86(3), 1266-1272.

Masood, S., Randhawa, M. A., Butt, M. S., & Asghar, M. (2016). A potential of biopesticides to enhance the shelf life of tomatoes (Lycopersicon Esculentum Mill.) in the controlled atmosphere. Journal of Food Processing and Preservation 40(1), 3-13.

Miyashira, C. H., Tanigushi, D. G., Gugliotta, A. M., & Santos, D. Y. (2012). Influence of caffeine on the survival of leaf‐cutting ants Atta sexdens rubropilosa and in vitro growth of their mutualistic fungus. Pest Management Science 68(6), 935-940.

Montoya, A. C. V., da Silva Mazareli, R. C., Delforno, T. P., Centurion, V. B., Sakamoto, I. K., de Oliveira, V. M., Luz Silva, E., & Varesche, M. B. A. (2020). Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. International Journal of Hydrogen Energy 44(39), 21434-21450.

Moreira, M. D., Melo, M. M., Coimbra, J. M., dos Reis, K. C., Schwan, R. F., & Silva, C. F. (2018). Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Management 82, 93-99.

Murthy, P. S., & Naidu, M. M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling 66, 45-58.

Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology 83, 173-179.

Pan, G., Yu, G., Zhu, C., & Qiao, J. (2012). Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrasonics Sonochemistry 19(3), 486-490.

Petrasch, S., Knapp, S. J., Van Kan, J. A., & Blanco‐Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology 20(6), 877-892.

Ramírez-Velasco, L., Armendariz-Ruiz, M. A., Arrizon, J., Rodriguez-Gonzalez, J. A., & Mateos-Diaz, J. C. (2016). Liberation of caffeic acid from coffee pulp using an extract with chlorgenate esterase activity of Aspergillus ochraceus produced by solid state fermentation. Revista Mexicana de Ingenieria Quimica 15(2), 503-512.

Ruiz-Palomino, P., Guatemala-Morales, G., Mondragón-Cortéz, P. M., Zúñiga-González, E. A., Corona-González, R. I., & Arriola-Guevara, E. (2019). Empirical model of the chlorogenic acid degradation kinetics during coffee roasting in a spouted bed. Revista Mexicana de Ingeniería Química 18(2), 387-396.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10), 1231-1237.

Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry 91(4), 621-632.

Sardi, J. D. C. O., Gullo, F. P., Freires, I. A., de Souza Pitangui, N., Segalla, M. P., Fusco-Almeida, A. M., Rosalen, L.P., Regasini, O.L., & Mendes-Giannini, M. J. S. (2016). Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Diagnostic Microbiology and Infectious Disease 86(4), 387-391.

Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., Gat, Y., & Kumar, A. (2019). Health effects, sources, utilization and safety of tannins: a critical review. Toxin Reviews, 1–13.

Sidoryk, K., Jaromin, A., Filipczak, N., Cmoch, P., & Cybulski, M. (2018). Synthesis and antioxidant activity of caffeic acid derivatives. Molecules 23(9), 2199.

Suleiman, M., & Yusuf, M. A. (2011). The potential of some plant powders as biopesticides against Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) and Callosobruchus maculatus (F.) The potential of some plant powders as biopesticides against Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on stored grains: a review (Coleoptera: Bruchidae) on stored grains: a review. Bayero Journal of Pure and Applied Sciences 4(2), 204-207.

Sung, W. S., & Lee, D. G. (2010). Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure and Applied Chemistry 82(1), 219-226.

Torres-Valenzuela, L. S., Ballesteros-Gómez, A., & Rubio, S. (2020). Supramolecular solvent extraction of bioactives from coffee cherry pulp. Journal of Food Engineering 278, 109933.

Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry 97, 159-178.

Wills, R. B. H., & Kim, G. H. (1995). Effect of ethylene on postharvest life of strawberries. Postharvest Biology and Technology 6(3-4), 249-255.

Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innovative Food Science & Emerging Technologies 11(3), 470-476.
How to Cite
Lobato-Calleros, C., Alvarado-Ambriz, S., Hernández-Rodríguez, L., & Vernon-Carter, E. (2020). Wet processing coffee waste as an alternative to produce extracts with antifungal activity: In vitro and in vivo valorization. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 135-149. https://doi.org/10.24275/rmiq/Bio1612