Degradation of sucralose present in Splenda sweetener by TiO2 photocatalysis assisted with photo-Fenton

  • A. Sandoval-González
  • A. Álvarez-Gallegos
  • J.A. Hernández
  • S. Silva-Martínez
Keywords: water, emerging contaminant, photo-Fenton, TiO2 photocatalysis, sucralose- Splenda®

Abstract

The pollutant legislation and its ecotoxicological dates recognize several water pollutants. However, there are others that have not yet been recognized as emerging organic pollutants because the damage that could be caused to the environment, especially in the water, is still unknown. For example, it is interesting to pay attention on Splenda because is increasingly consumed worldwide today. Splenda is one of the emerging pollutants that has not yet been formally declared as a pollutant, but there are some findings that show Splenda as a water pollutant, specifically the sucralose molecule, due to persistence in the environment. In this work, the mineralization of Splenda, in different initial concentrations (72 mg l-1, 144 mg l-1 and 288 mg l-1), was carried out by TiO2 photocatalysis assisted with photo-Fenton. Splenda mineralization is less than 58% by these processes when used separately; however, Splenda was mineralized 62.8% (72 mg l-1), 83.7% (144 mg l-1) and 58.8% (288 mg l-1) by TiO2 photocatalysis assisted with photo-Fenton at 2 h, 5 h and 5 h, respectively. In all cases, the mineralization followed a pseudo-first-order reaction.

References

Abou-Donia, M. B., El-Masry E. M., Abdel-Rahman A. A., McLendon R. E., & Schiffman S. (2008). Splenda Alters Gut Microflora and Increases Intestinal P-Glycoprotein and Cytochrome P-450 in Male Rats. Journal of Toxicology and Environmental Health Part A, 71, 1415-1429. https://doi.org/10.1080/15287390802328630.
Alvarez-Gallegos, A., & Pletcher, D. (1999). The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochimica Acta,, 44, 2483-2492. https://doi.org/10.1016/S0013-4686(98)00371-5.
Baird, I. M., Shephard, N. W., Merritt, R. J., & Hildick-Smith, G. (2000). Repeated dose study of sucralose tolerance in human subjects. Food Chemical Toxicology l, 38, S123-S129. https://doi.org/10.1016/S0278-6915(00)00035-1
Bannach, G., Almeida, R. R., Lacerda, L. G., Schnitzler, E., & Ionashiro, M. (2009). Thermal stability and thermal decomposition of sucralose. Eclética Química, 34, 21-22. https://doi.org/10.1590/S0100-46702009000400002
Barndt, R. L., & Jackson, G. (1990). Stability of sucralose in baked goods. Food Technology, 44, 62-67. https://www.cabdirect.org/cabdirect/abstract/19900396651
Bellardita M., García-López, E. I., Marcì, G., Megn, B., Pomilla, F. R., Palmisano, L. (2015). Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid–TiO2. The Royal Society Chemistry Advances, 5, 59037-59047. https://doi.org/10.1039/C5RA09894G
Benitez, F. J., Acero, J. L., Real, F. J., Roldan, G., Rodriguez, E. (2013). Photolysis of model emerging contaminants in ultra-pure water: Kinetics, by-products formation and degradation pathways. Water Research, 47, 870-880. https://doi.org/10.1016/j.watres.2012.11.016
Bigda, R. J. (1995). Consider Fenton´s chemistry for wastewater treatment. Chemical Engineering and Processing: Process Intensification, 91(2), 62-66. https://www.semanticscholar.org/paper/Consider-Fenton's-chemistry-for-wastewater-Bigda/ddb7c0d78f4bfe1a0a3e4b4284722ba3e2586a79
Binns, N. M. (2003). Sucralose-all sweetness and light. British Nutrition Foundation Nutrition Bulletin, 28, 53-58. https://doi.org/10.1046/j.1467-3010.2003.00307.x
Bizani, E., Fytianos, K., Poulios, I., Tsiridis, V. (2006). Photocatalytic decolourization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. Journal of Hazardous Materials, 136, 85-94. https://doi.org/10.1016/j.jhazmat.2005.11.017
Buerge, I. J., Buser, H. R., Kahle, M., Müller, M. D., Poiger, T. (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environmental Science & Technology, 43, 4381-4385. https://doi.org/10.1021/es900126x
Calza, P., Sakkas, V. A., Medana, C., Vlachou, A. D., Dal Bello, F., Albanis, T. A. (2013). Chemometric assessment and investigation of mechanism involved in photo-Fenton and TiO2 photocatalytic degradation of the artificial sweetener sucralose in aqueous media. Applied Catalysis B, 129, 71-79. https://doi.org/10.1016/j.apcatb.2012.08.043
Carocho, M., Morales, P., Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends Food Science Technology, 45, 284-295. https://doi.org/10.1016/j.tifs.2015.06.007
Chen, S., Zhang, H., Li, S. (2016). The Tenth International Conference on Waste Management and Technology (ICWMT). Investigation of mechanism involved in TiO2 and Photo-Fenton photocatalytic degradation of emerging contaminant sucralose in aqueous media. Procedia Environmental Science, 3, 753-757. DOI: 10.1016/j.proenv.2016.02.064
Da Vià, L., Recchi, C., Gonzalez-Yañez, E. O., Davies, T. E., Lopez-Sanchez, J. A. (2017). Visible light selective photocatalytic conversion of glucose by TiO2. Applied Catalysis B: Environmental, 202, 281-288. https://doi.org/10.1016/j.apcatb.2016.08.035
De Oliveira, D. N., de Menezes, M., Catharino, R. R. (2015). Thermal degradation of sucralose: a combination of analytical methods to determine stability and chlorinated byproducts. Scientific Reports, 5, 9598. DOI :10.1038/srep09598
Dong, S., Liu, G., Zhang, B., Gao, L., Zheng, M. (2013). Formation of polychlorinated naphthalenes during the heating of cooking oil in the presence of high amounts of sucralose. Food control, 32, 1-5. https://doi.org/10.1016/j.foodcont.2012.11.001
Doummar, J., Aoun, M. (2018). Assessment of the origin and transport of four selected emerging micropollutants sucralose, Acelsulfame-K, gemfibrozil, and iohexol in a karst spring during a multi-event spring response. Journal of Contaminant Hydrology, 215, 11-20. DOI: 10.1016/j.jconhyd.2018.06.003.
Eskandarian, M. R., Choi, H., Fazli, M., Rasoulifard, M. H. (2016). Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chemical Engineering Journal, 300, 414-422. https://doi.org/10.1016/j.cej.2016.05.049
Fawell, J., Ong, C. N. (2012). Emerging contaminants and the implications for drinking water. International Journal of Water Resources Development, 28, 247-263. https://doi.org/10.1080/07900627.2012.672394
Gallus, S., Scotti, L., Negri, E., Talamini, R., Franceschi, S., Montella, M., Giacosa, A., Maso, L. D., La Vecchia, C. (2007). Artificial sweeteners and cancer risk in a network of case-control studies. Annals of Oncology, 18, 40-44. https://doi.org/10.1093/annonc/mdl346
Gardner, C., Wylie-Rosett, J., Gidding, S. S., Steffen, L. M., Johnson, R. K., Reader, D., Lichtenstein, A. H. (2012). Nonnutritive Sweeteners: Current use and health perspectives. Diabetes Care, 35, 1798-1808. https://doi.org/10.2337/dc12-9002
Glaze, W. H., Kenneke, J. F., Ferry, J. L. (1993). Chlorinated by products from the TiO2 -mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environmental Science & Technology, 27, 177-184. https://doi.org/10.1021/es00038a021

Grotz, V. L., Molinary, S., Peterson, R. C. (2012). Sucralose in alternative Sweeteners (ed. L. O’Brien Nabors). CRC Press Taylor and Francis Group, Boca Raton.
Grotz, V. L., Munro, I. C. (2009). An overview of the safety of sucralose. Regulatory Toxicology and Pharmacology, 55, 1-5. https://doi.org/10.1016/j.yrtph.2009.05.011
Heredia-García, G., Gómez-Oliván, L. M., Orozco-Hernández, J. M., Luja-Mondragón, M., Islas-Flores, H., SanJuan-Reyes, N., Galar-Martínez, Ma, García-Medina, S., Dublán-García, O. (2019). Alterations to DNA, apoptosis and oxidative damage induced by sucralose in blood cells of Cyprinus carpio. Science of the Total Environment, 692, 411-421. DOI: 10.1016/j.scitotenv.2019.07.165.
Hurtado, C., Domínguez, C., Pérez-Babace, L., Cañameras, N., Comas, J., Bayona, J. M. (2016). Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. Journal of Hazardous Materials, 305,139-148. https://doi.org/10.1016/j.jhazmat.2015.11.039
Hutchinson, S. A. (1996). The effect of pH, temperature and reactants on the thermal and non-thermal degradation of the high-intensity sweeteners: Alitame and sucralose. Ph.D. Dissertation, Rutgers University, New Brunswick, New Jersey.
Hutchinson, S. A., Ho, G. S., Ho, C. T. (1999). Stability and degradation of the high‐intensity sweeteners: Aspartame, Alitame, and Sucralose. Food Reviews International, 15, 249-261. https://doi.org/10.1080/87559129909541189
Inyang, M., Flowers, R., McAvoy, D., Dickenson, E. (2016). Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system. Bioresource Technology, 216, 778-784. doi: 10.1016/j.biortech.2016.05.124
John, B. A., Wood, S. G., Hawkins, D. R. (2000). The pharmacokinetics and metabolism of sucralose in the rabbit. Food and Chemical Toxicology, 38(2), S111-S113. https://doi.org/10.1016/S0278-6915(00)00033-8
Kohli, R. (2015). Chapter 2-UV-Ozone cleaning for removal of surface contaminants. Development in surface contamination and cleaning. Development in surface Contamination and Cleaning. William Andrew Publishing 71-104. https://doi.org/10.1016/B978-0-323-29961-9.00002-8
Loos, R., Gawlik, B. M., Boettcher, K., Locoro, G., Contini, S., Bidoglio, G. (2009). Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method. Journal of Chromatography A, 1216, 1126-1131. https://doi.org/10.1016/j.chroma.2008.12.048
Loret, C., Schumm, S., Pudney, P. D. A., Frith, W. J., Fryer, P. J. (2005). Phase separation and molecular weight fractionation behaviour of maltodextrin/agarose mixtures. Food Hydrocolloids, 19, 557-565. https://doi.org/10.1016/j.foodhyd.2004.10.030
Lubick, N. (May 1, 2008). Artificial sweetener persists in the environment. Environmental Science & Technology, 3125. https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Luo, J., Zhang, Q., Cao, M., Wu, L., Cao, J., Fang, F., Li, C., Xue, Z., Feng, Q. (2019). Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners: A review. Science of The Total Environment, 653, 1149-1160. https://doi.org/10.1016/j.scitotenv.2018.10.445
Magnuson, B. A., Roberts, A., Nestmann, E. R. (2017). Critical review of the current literature on the safety of sucralose. Food Chemical Toxicology, 106, 324-355. https://doi.org/10.1016/j.fct.2017.05.047
Max, J. J., Chapados, C. (2009). Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm-1. The Journal of Chemical Physics, 13, 184505. https://doi.org/10.1063/1.3258646
Muruganandham, M., Suri, R. P. S., Jafari, S., Sillanpää, M., Lee, G. J., Wu, J. J., Swaminathan, M. (2014). Review article: Recent development in homogeneous advanced oxidation processes for water and wastewater treatment. International Journal of Photoenergy, 2014, 1-21. https://doi.org/10.1155/2014/821674
Naidu, R., Arias Espana, V. A., Liu, Y., Jit, J. (2016). Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, 350-357. https://doi.org/10.1016/j.chemosphere.2016.03.068
Oppenheimer, J. A., Badruzzaman, M., Jacangelo, J. G. (2012). Differentiating sources of anthropogenic loading to impaired water bodies utilizing ratios of sucralose and other microconstituents. Water Resource, 46, 5904-5916. https://doi.org/10.1016/j.watres.2012.07.060
Papoutsakis, S., Pulgarin, C., Oller, I., Sánchez-Moreno, R., Malato, S. (2016). Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products: The possibilities of cork boiling wastewater reuse. Chemical Engineering Journal, 304, 890-896. https://doi.org/10.1016/j.cej.2016.07.021
Paulino, A. T., Fajardo, A. R., Junior, A. P., Muniz, E. C., Tambourgi, E. B. (2011). Two-step synthesis and properties of a magnetic-field-sensitive modified moltodextrin-based hydrogel. Polymer International, 60, 1324-1333. https://doi.org/10.1002/pi.3084
Pignatello, J. J., Oliveros, E., MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36, 1-84. https://doi.org/10.1080/10643380500326564
Reutergardh, L. B., Langphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis. Chemosphere, 35, 585-596. https://doi.org/10.1016/S0045-6535(97)00122-7
Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J. A., Calderas, F., González-Laredo, R. F., Rocha-Guzmán, N. E., Ochoa-Martínez, L. A., Bernad-Bernad, M. J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomun zeylanicum) with maltodextrin. . LWT-Food Science and Technology, 64, 571-577. https://doi.org/10.1016/j.lwt.2015.06.020
Saucedo-Vence, K., Elizalde-Velázquez, A., Dublán-Garcia, O., Galar-Martínez, M., Islas-Flores, H., SanJuan-Reyes, N., García-Medina, S., Hernández-Navarro, M. D., Gómez-Olivan, L. M. (2017). Toxicological hazard induced by sucralose to environmentally relevant concentrations in common carp (Cyprinus carpio). The Science of The Total Environment, 575, 47-357. https://doi.org/10.1016/j.scitotenv.2016.09.230
Scheurer, M., Stork, F. R., Brauch, H. J., Lange, F. T. (2010). Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners. Water Research, 44, 573-3584. http://dx.doi.org/10.1016/j.apcatb.2016.08.035
Schiffman, S. S., Abou-Donia, M. B. (2012). Sucralose revisited: Rebuttal of two papers about Splenda safety. Regulatory Toxicology and Pharmacology, 63, 505-508. DOI: 10.1016/j.yrtph.2012.05.002
Sharma, B. M., Bečanová, J., Scheringer, M., Sharma, A., Bharat, G. K., Whitehead, P. G., Klánová, J., Nizzetto, L. (2019). Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. The Science of The Total Environment, 646, 1459-1467. https://doi.org/10.1016/j.scitotenv.2018.07.235
Silva, M. S., Lizama, B. C. (2009). Chlorbromuron urea herbicide removal by electro-Fenton reaction in aqueous effluents. Water Research, 43, 33-40. https://doi.org/10.1016/j.watres.2008.09.036
Smrčková, P., Horskỳ, J., Šárka, E., Koláček, J., Netopilík, M., Walterová, Z., Kruliš, Z., Synytsya, A., Hrušková, K. (2013). Hydrolysis of wheat B-starch and characterization of acetylated maltodextrin. Carbohydrate Polymers, 98, 43-49. https://doi.org/10.1016/j.carbpol.2013.04.065
Sucralose-FDA. (1998). Final Rule- Food Additives Permitted Addition to Food for Human Consumption. United States: Food and Drug Administration. Federal Register/ Vol 63, No. 64/Friday, April 3, 1998/ Rules and Regulations, 16417-16433. https://www.govinfo.gov/content/pkg/FR-1998-04-03/pdf/98-8750.pdf
Suez, J., Korel, T., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Istaeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 154, 181-186. DOI: 10.1038/nature13793
Tabani, H., Mahyari, M., Sahragard, A., Fakhari, A. R., Shaabani, A. (2015). Evaluation of sulfated maltodextrin as a novel anionic chiral selector for the enantioseparation of basic chiral groups by capillary electrophoresis. Electrophoresis, 36, 305-311. https://doi.org/10.1002/elps.201400370
Tran, N. H., Nguyen, V. T., Urase, T., Ngo, H. H. (2014). Role of nitrification in the biodegradation of selected artificial sweetening agents in biological wastewater treatment process. Bioresource Technology, 161, 40-46. https://doi.org/10.1016/j.biortech.2014.02.116
Wang, F., van Halem, D., van de Hoek, J. P. (2016). The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production. Chemosphere, 148, 263-269. https://doi.org/10.1016/j.chemosphere.2016.01.046
Wiklund, A. K., Breitholtz, M., Bengtsson, B. E., Adolfsson-Erici, M. (2012). Sucralose-An ecotoxicological challenger? Chemosphere, 86, 50-55. https://doi.org/10.1016/j.chemosphere.2011.08.049
Wood, S. G., John, B. A., Hawkins, D. R. (2000). The pharmacokinetics and metabolism of sucralose in the dog. Food and Chemical Toxicology, 38(2), S99-S106. https://doi.org/10.1016/S0278-6915(00)00031-4
Published
2020-09-22
How to Cite
Sandoval-González, A., Álvarez-Gallegos, A., Hernández, J., & Silva-Martínez, S. (2020). Degradation of sucralose present in Splenda sweetener by TiO2 photocatalysis assisted with photo-Fenton. Revista Mexicana De Ingeniería Química, 20(1), 213-226. https://doi.org/10.24275/rmiq/IA1623
Section
Environmental Engineering

Most read articles by the same author(s)