Sulfonated rim rubber used as a solid catalyst for the biodiesel production with oleic acid and optimized by Box-Behnken method

  • L.A. Sánchez-Olmos
  • M. Sánchez-Cárdenas
  • K. Sathish-Kumar
  • D.N. Tirado-González
  • F.J. Rodríguez-Valadez
Keywords: Biodiesel production; solid acid catalyst; sulfonation treatment; Box-Behnken method; reaction cycles

Abstract

Esterification of oleic acid was carried out to obtain methyl esters at temperatures below the critical point of methanol in the presence of sulfonated carbon. That was obtained by pyrolysis from tire rubber and use as catalytic support after sulfonated. The sulfonated carbonaceous material in the laboratory was analyzed by spectroscopy and microscopic techniques: IR spectroscopy, X-ray diffractometry, programmed desorption at a temperature (TG-DTG), X-ray photoelectron spectroscopy and scanning electron microscopy. The physicochemical properties of catalyst favor high performance in the production of biodiesel from oleic acid, are easily separated from the liquid mixture at the end of the reaction. At the temperature of 200 °C, with a reaction time of 20 min and a catalyst amount of 0.03% by weight, was the optimal experimental conditions for the esterification of oleic acid with methanol, giving a conversion of 97.9% of free fatty acids according to the response surface method. The Box-Behnken experiments were applied in order to evaluate the effects of the production parameters of biodiesel and find out the optimal conditions to obtain the maximum yield. Interestingly, stable catalytic activity in several reaction cycles was found.

Author Biographies

M. Sánchez-Cárdenas

catalyst expert

D.N. Tirado-González

expert in statistical data analysis

F.J. Rodríguez-Valadez

expert in obtaining biodiesel

References

Araujo, R. O., Chaar, J. da S., Queiroz, L. S., da Rocha Filho, G. N., da Costa, C. E. F., da Silva, G. C. T., Landers, R., Costa, M. J. F., Gonçalves, A. A. S., & de Souza, L. K. C. (2019). Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.06.059

Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.02.063

Baharudin, K. B., Taufiq-Yap, Y. H., Hunns, J., Isaacs, M., Wilson, K., & Derawi, D. (2019). Mesoporous NiO/Al-SBA-15 catalysts for solvent-free deoxygenation of palm fatty acid distillate. Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2018.09.014

Bing, W., & Wei, M. (2019). Recent advances for solid basic catalysts: Structure design and catalytic performance. Journal of Solid State Chemistry. https://doi.org/10.1016/j.jssc.2018.09.023

Cannilla, C., Bonura, G., Costa, F., & Frusteri, F. (2018). Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Applied Catalysis A: General, 566(August), 121–129. https://doi.org/10.1016/j.apcata.2018.08.014

Cea, M., González, M. E., Abarzúa, M., & Navia, R. (2019). Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2019.04.013

Chaveanghong, S., Smith, S. M., Smith, C. B., Luengnaruemitchai, A., & Boonyuen, S. (2018). Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions. Renewable Energy. https://doi.org/10.1016/j.renene.2018.03.036

Chellappan, S., Nair, V., Sajith, V., & Aparna, K. (2018). Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2018.02.034

Cheryl-Low, Y. L., Theam, K. L., & Lee, H. V. (2015). Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2015.10.018

Chhabra, P., Zhou, L., Karimi, I. A., & Kraft, M. (2018). Exploiting meta-modeling approach to investigate the effect of oil characteristics on the optimal operating conditions and biodiesel properties. In Computer Aided Chemical Engineering. https://doi.org/10.1016/B978-0-444-64235-6.50029-2

Choi, D., Yoo, S. H., & Lee, S. (2019). Safer and more effective route for polyethylene-derived carbon fiber fabrication using electron beam irradiation. Carbon. https://doi.org/10.1016/j.carbon.2019.01.061

Dejean, A., Ouédraogo, I. W. K., Mouras, S., Valette, J., & Blin, J. (2017). Shea nut shell based catalysts for the production of ethanolic biodiesel. Energy for Sustainable Development. https://doi.org/10.1016/j.esd.2017.07.006

Dhawane, S. H., Kumar, T., & Halder, G. (2016). Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy. https://doi.org/10.1016/j.renene.2015.12.027

Dhawane, S. H., Kumar, T., & Halder, G. (2018). Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2018.04.073

Douzandegi Fard, M. A., Ghafuri, H., & Rashidizadeh, A. (2019). Sulfonated highly ordered mesoporous graphitic carbon nitride as a super active heterogeneous solid acid catalyst for Biginelli reaction. Microporous and Mesoporous Materials. https://doi.org/10.1016/j.micromeso.2018.07.030

Efimov, M. N., Sosenkin, V. E., Volfkovich, Y. M., Vasilev, A. A., Muratov, D. G., Baskakov, S. A., Efimov, O. N., & Karpacheva, G. P. (2018). Electrochemical performance of polyacrylonitrile-derived activated carbon prepared via IR pyrolysis. Electrochemistry Communications, 96, 98–102. https://doi.org/10.1016/j.elecom.2018.10.016

Fadhil, A. B., Aziz, A. M., & Al-Tamer, M. H. (2016). Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2015.11.013

Farobie, O., & Matsumura, Y. (2017). Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.210

Ferreira, A. R. O., Silvestre-Albero, J., Maier, M. E., Ricardo, N. M. P. S., Cavalcante, C. L., & Luna, F. M. T. (2020). Sulfonated activated carbons as potential catalysts for biolubricant synthesis. Molecular Catalysis, 488(January), 110888. https://doi.org/10.1016/j.mcat.2020.110888

Fraile, J. M., García-Bordejé, E., Pires, E., & Roldán, L. (2015). Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids: Comparison with sulfonic solids of different nature. Journal of Catalysis. https://doi.org/10.1016/j.jcat.2014.12.032

Gao, Z., Tang, S., Cui, X., Tian, S., & Zhang, M. (2015). Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid. Fuel. https://doi.org/10.1016/j.fuel.2014.10.012

Guan, Q., Li, Y., Chen, Y., Shi, Y., Gu, J., Li, B., Miao, R., Chen, Q., & Ning, P. (2017). Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Advances. https://doi.org/10.1039/c6ra28067f

Habaki, H., Hayashi, T., & Egashira, R. (2018). Deacidification process of crude inedible plant oil by esterification for biodiesel production. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.04.039

Hajamini, Z., Sobati, M. A., Shahhosseini, S., & Ghobadian, B. (2016). Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2015.10.101

Hood, Z. D., Adhikari, S. P., Li, Y., Naskar, A. K., Figueroa-Cosme, L., Xia, Y., Chi, M., Wright, M. W., Lachgar, A., & Paranthaman, M. P. (2017). Novel Acid Catalysts from Waste-Tire-Derived Carbon: Application in Waste–to-Biofuel Conversion. ChemistrySelect, 2(18), 4975–4982. https://doi.org/10.1002/slct.201700869

Hood, Z. D., Adhikari, S. P., Evans, S. F., Wang, H., Li, Y., Naskar, A. K., Chi, M., Lachgar, A., & Paranthaman, M. P. (2018). Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resources Conversion, 1(2), 165–173. https://doi.org/10.1016/j.crcon.2018.07.007

Hood, Z. D., Cheng, Y., Evans, S. F., Adhikari, S. P., & Parans Paranthaman, M. (2019). Unraveling the structural properties and dynamics of sulfonated solid acid carbon catalysts with neutron vibrational spectroscopy. Catalysis Today, (October), 0–1. https://doi.org/10.1016/j.cattod.2019.10.033

Hosseini, M. S., Masteri-Farahani, M., & Shahsavarifar, S. (2019). Chemical modification of reduced graphene oxide with sulfonic acid groups: Efficient solid acids for acetalization and esterification reactions. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2019.05.020

Hosseini, S., Janaun, J., & Choong, T. S. Y. (2015). Feasibility of honeycomb monolith supported sugar catalyst to produce biodiesel from palm fatty acid distillate (PFAD). Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2015.08.011

Jia, M., Jiang, L., Niu, F., Zhang, Y., & Sun, X. (2018). A novel and highly efficient esterification process using triphenylphosphine oxide with oxalyl chloride. Royal Society Open Science. https://doi.org/10.1098/rsos.171988

Jiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2013.08.011

Kumar, V., Muthuraj, M., Palabhanvi, B., Ghoshal, A. K., & Das, D. (2014). Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renewable Energy. https://doi.org/10.1016/j.renene.2014.02.037

Kurniawan, J., Suga, K., & Kuhl, T. L. (2017). Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions. Biochimica et Biophysica Acta - Biomembranes, 1859(2), 211–217. https://doi.org/10.1016/j.bbamem.2016.11.001

Latchubugata, C. S., Kondapaneni, R. V., Patluri, K. K., Virendra, U., & Vedantam, S. (2018). Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2018.05.022

Li, N., Wang, Q., Ullah, S., Zheng, X. C., Peng, Z. K., & Zheng, G. P. (2019). Esterification of levulinic acid in the production of fuel additives catalyzed by porous sulfonated carbon derived from pine needle. Catalysis Communications, 129(April), 105755. https://doi.org/10.1016/j.catcom.2019.105755

Liu, L., Wen, Z., & Cui, G. (2015). Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification. Fuel. https://doi.org/10.1016/j.fuel.2015.05.025

Lokman, I. M., Rashid, U., & Taufiq-Yap, Y. H. (2016). Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.06.034

Long, Y. D., Fang, Z., Su, T. C., & Yang, Q. (2014). Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Applied Energy. https://doi.org/10.1016/j.apenergy.2012.12.076

Lozano, P., Bernal, J. M., Sánchez-Gómez, G., López-López, G., & Vaultier, M. (2013). How to produce biodiesel easily using a green biocatalytic approach in sponge-like ionic liquids. Energy and Environmental Science. https://doi.org/10.1039/c3ee24429f

Medina-Valtierra, J., Sánchez-Olmos, L. A., Carrasco-Marin, F., & Sánchez-Cárdenas, M. (2017). Optimization models type box-behnken in the obtaining of biodiesel from waste frying oil using a large-acidity carbonaceous catalyst. International Journal of Chemical Reactor Engineering. https://doi.org/10.1515/ijcre-2017-0072

Mohammed, N. I., Kabbashi, N. A., Alam, M. Z., & Mirghani, M. E. S. (2016). Esterification of Jatropha curcas hydrolysate using powdered niobic acid catalyst. Journal of the Taiwan Institute of Chemical Engineers. https://doi.org/10.1016/j.jtice.2016.03.007

Mota, F. A. S., Costa Filho, J. T., & Barreto, G. A. (2019). The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2019.03.035

Ning, Y., & Niu, S. (2017). Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.10.025

Noshadi, I., Kanjilal, B., Du, S., Bollas, G. M., Suib, S. L., Provatas, A., Liu, F., & Parnas, R. S. (2014). Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer. Applied Energy. https://doi.org/10.1016/j.apenergy.2014.04.090

Paysepar, H., Tirumala, K., Rao, V., Yuan, Z., & Nazari, L. (2018). Zeolite catalysts screening for production of phenolic bio-oils with high contents of monomeric aromatics / phenolics from hydrolysis lignin via catalytic fast pyrolysis. Fuel Processing Technology, (April), 0–1. https://doi.org/10.1016/j.fuproc.2018.07.013

Pisarello, M. L., Maquirriain, M., Sacripanti Olalla, P., Rossi, V., & Querini, C. A. (2018). Biodiesel production by transesterification in two steps: Kinetic effect or shift in the equilibrium conversion? Fuel Processing Technology. https://doi.org/10.1016/j.fuproc.2018.09.028

Purova, R., Narasimharao, K., Ahmed, N. S. I., Al-Thabaiti, S., Al-Shehri, A., Mokhtar, M., & Schwieger, W. (2015). Pillared HMCM-36 zeolite catalyst for biodiesel production by esterification of palmitic acid. Journal of Molecular Catalysis A: Chemical. https://doi.org/10.1016/j.molcata.2015.06.006

Rechnia-Gorący, P., Malaika, A., & Kozłowski, M. (2019). Effective conversion of rapeseed oil to biodiesel fuel in the presence of basic activated carbon catalysts. Catalysis Today. https://doi.org/10.1016/j.cattod.2019.05.055

Rocha, J. G., Mendonça, A. D. M., de Campos, D. A. R., Mapele, R. O., Barra, C. M., Bauerfeldt, G. F., & Tubino, M. (2019). Biodiesel synthesis: Influence of alkaline catalysts in methanol-oil dispersion. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180183

Sánchez-Cárdenas, M., Medina-Valtierra, J., Kamaraj, S. K., Trejo-Zárraga, F., & Antonio Sánchez-Olmos, L. (2017). Physicochemical effect of Pt nanoparticles/Γ-Al2O3on the oleic acid hydrodeoxygenation to biofuel. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12563

Sánchez-Cárdenas, M., Medina-Valtierra, J., Kamaraj, S.-K., Medina Ramírez, R., & Sánchez-Olmos, L. (2016). Effect of Size and Distribution of Ni Nanoparticles on γ-Al2O3 in Oleic Acid Hydrodeoxygenation to Produce n-Alkanes. Catalysts. https://doi.org/10.3390/catal6100156

Sánchez-Olmos, L. A., Medina-Valtierra, J., Sathish-Kumar, K., & Sánchez Cardenas, M. (2017). Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production. Environmental Progress and Sustainable Energy. https://doi.org/10.1002/ep.12499

Sánchez-Olmos, L. A., Sánchez-Cárdenas, M., Sathish-Kumar, K., Tirado-González, D. N., Maldonado-Ruelas, V. A., & Ortiz-Medina, R. A. (2019). Effect of the sulfonated catalyst in obtaining biodiesel when used in a diesel engine with controlled tests . Revista Mexicana de Ingeniería Química. https://doi.org/10.24275/rmiq/ie831

Sangar, S. K., Syazwani, O. N., Farabi, M. S. A., Razali, S. M., Shobhana, G., Teo, S. H., & Taufiq-Yap, Y. H. (2019). Effective biodiesel synthesis from palm fatty acid distillate (PFAD)using carbon-based solid acid catalyst derived glycerol. Renewable Energy, 142, 658–667. https://doi.org/10.1016/j.renene.2019.04.118

Santos, E. M., Teixeira, A. P. D. C., Da Silva, F. G., Cibaka, T. E., Araújo, M. H., Oliveira, W. X. C., Medeiros, F., Brasil, A. N., De Oliveira, L. S., & Lago, R. M. (2015). New heterogeneous catalyst for the esterification of fatty acid produced by surface aromatization/sulfonation of oilseed cake. Fuel. https://doi.org/10.1016/j.fuel.2015.02.027

Saravanan, K., Tyagi, B., & Bajaj, H. C. (2016). Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol. Applied Catalysis B: Environmental. https://doi.org/10.1016/j.apcatb.2016.03.037

Saravanan, K., Tyagi, B., Shukla, R. S., & Bajaj, H. C. (2015). Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Applied Catalysis B: Environmental. https://doi.org/10.1016/j.apcatb.2015.02.014

Sarno, M., & Iuliano, M. (2018). Active biocatalyst for biodiesel production from spent coffee ground. Bioresource Technology. https://doi.org/10.1016/j.biortech.2018.06.108

Shi, Y., & Liang, X. (2019). Novel carbon microtube based solid acid from pampas grass stick for biodiesel synthesis from waste oils. Journal of Saudi Chemical Society. https://doi.org/10.1016/j.jscs.2018.09.004

Shukla, A., Bhat, S. D., & Pillai, V. K. (2016). Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2016.08.019

Singh, S., & Patel, A. (2017). Value added products derived from biodiesel waste glycerol: activity, selectivity, kinetic and thermodynamic evaluation over anchored lacunary phosphotungstates. Journal of Porous Materials. https://doi.org/10.1007/s10934-017-0382-5

Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K., & Abudula, A. (2015). Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2015.02.044

Tang, J., Yu, C., Wang, R., & Liu, J. (2019). Sulfonation of graphene and its effects on tricalcium silicate hydration. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.01.155

Teo, S. H., Islam, A., Yusaf, T., & Taufiq-Yap, Y. H. (2014). Transesterification of Nannochloropsis oculata microalga’s oil to biodiesel using calcium methoxide catalyst. Energy. https://doi.org/10.1016/j.energy.2014.07.045

Veiga, P. M., Gomes, A. C. L., Veloso, C. O., & Henriques, C. A. (2017). Acid zeolites for glycerol etherification with ethyl alcohol: Catalytic activity and catalyst properties. Applied Catalysis A: General. https://doi.org/10.1016/j.apcata.2017.06.042

Veljković, V. B., Veličković, A. V., Avramović, J. M., & Stamenković, O. S. (2018). Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2018.08.002

Wang, Y., Wang, X., Xie, Y., & Zhang, K. (2018). Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose. https://doi.org/10.1007/s10570-018-1830-3

Xie, W., & Zhao, L. (2014). Heterogeneous CaO-MoO3-SBA-15 catalysts for biodiesel production from soybean oil. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2013.11.041

Yuvaraj, P., Rao, J. R., Fathima, N. N., Natchimuthu, N., & Mohan, R. (2018). Complete replacement of carbon black filler in rubber sole with CaO embedded activated carbon derived from tannery solid waste. Journal of Cleaner Production, 170, 446–450. https://doi.org/10.1016/j.jclepro.2017.09.188

Zhang, D. Y., Duan, M. H., Yao, X. H., Fu, Y. J., & Zu, Y. G. (2016). Preparation of a novel cellulose-based immobilized heteropoly acid system and its application on the biodiesel production. Fuel. https://doi.org/10.1016/j.fuel.2015.12.020

Zhang, H., Li, H., Pan, H., Wang, A., Souzanchi, S., Xu, C. (Charles), & Yang, S. (2018). Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Applied Energy. https://doi.org/10.1016/j.apenergy.2018.04.061

Zhou, Y., Niu, S., & Li, J. (2016). Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.02.027

Zhou, Y., Schideman, L., Yu, G., & Zhang, Y. (2013). A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy and Environmental Science.

Published
2020-07-01
How to Cite
Sánchez-Olmos, L., Sánchez-Cárdenas, M., Sathish-Kumar, K., Tirado-González, D., & Rodríguez-Valadez, F. (2020). Sulfonated rim rubber used as a solid catalyst for the biodiesel production with oleic acid and optimized by Box-Behnken method. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 429-444. https://doi.org/10.24275/rmiq/Cat1625
Section
Catalysis, kinetics and reactors

Most read articles by the same author(s)