Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability

  • S.K. Velázquez-Gutiérrez
  • E. Alpizar-Reyes
  • J. Cruz-Olivares
  • J.F. Barrera-Pichardo
  • M.E. Rodríguez-Huezo
  • C. Pérez-Alonso
Keywords: Nopal mucilage, Sodium alginate, Ionic gelation, Sesame oil, Oxidative stability, Encapsulation efficiency


Novel hydrogel beads were formed by ionic gelation between sodium alginate-nopal mucilage (SA-NM) for enhancing the encapsulation efficiency and oxidative stability of sesame oil (SO). SA-NM blends (2% w/v) were used 1:1 and 1:1.5 mass ratios. Ionic gelation was induced by dripping the SO-SA-NM homogenized dispersions with the help of a syringe into CaCl2 (2.5% w/v) solution with continuous stirring. The resulting beads were oven-dried and stored under controlled temperature conditions. The hydrogel beads were evaluated for size and shape, and for SO encapsulation efficiency, oxidative stability, and release kinetics.  Results were compared with hydrogel beads made with only SA (2% w/v). The SA beads had a regular spherical shape with a mean size of ~2.19 mm, while the SA-NM hydrogels beads had an irregular semi-spherical shape with a significant smaller (~2.06-2.10 mm) size. SA-NM hydrogel beads displayed higher encapsulation efficiency (> 75.44%) than SA beads (63.48%), and provided better protection to SO against oxidation during storage than the SA beads and free SO oil. Oxidation kinetics were of zero-order in all cases. The release kinetics of SO was diffusion controlled and was significantly slower for SA-NM than for SA beads. Our results indicate that SA-NM mixtures may be considered as novel potential additives for food industry applications.


Alpizar-Reyes, E., Varela-Guerrero, V., Cruz-Olivares, J., Carrillo-Navas, H., Alvarez-Ramirez, J., & Pérez-Alonso, C. (2020). Microencapsulation of sesame seed oil by tamarind seed mucilage. International Journal of Biological Macromolecules, 145, 207-215.

Bannikova, A., Evteev, A., Pankin, K., Evdokimov, I., & Kasapis, S. (2016). Microencapsulation of fish oil with alginate: In-vitro evaluation and controlled release. LWT - Food Science and Technology, 90, 310-315.

Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77-83.

Bligh, E.G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

Chan, E.S. (2011). Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers, 84(4), 1267-1275. doi:10.1016/j.jcis.2009.05.027.

Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., & McClements, D.J. (2015). The physical characterization and sorption isotherm of rice bran oil powders stabilized by food-grade biopolymers. Drying Technology, 33 (4), 479-492.

Chen, L. Y., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology, 17(5), 272-283. doi:10.1016/j.tifs.2005.12.011.

Corso, M.P., Fagundes-Klena, M.R., Silva, E.A., Filho, L.C., Santos, J.N., Freitas, L.S., & Dariva, C. (2010). Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. The Journal of Supercritical Fluids, 52, 56-61. doi:10.1016/j.supflu.2009.11.012.

Cortés-Camargo, S., Gallardo-Rivera, R., Barragán-Huerta, B.E., Dublán-García, O., Román-Guerrero, A., & Pérez-Alonso, C. (2018). Exploring the Potential of Mesquite Gum–Nopal Mucilage Mixtures: Physicochemical and Functional Properties. Journal of Food Science, 83(1), 113-121. doi: 10.1111/1750-3841.13937.

Escalona-García, L.A., Pedroza-Islas, R., Natividad, R., Rodríguez-Huezo, M.E., Carrillo-Navas, H., & Pérez-Alonso, C. (2016). Oxidation kinetics and thermodynamic analysis of chia oil microencapsulated in a whey protein concentrate-polysaccharide matrix. Journal of Food Engineering, 175, 93-103.

Fogler, H.S. (2006). Elements of Chemical Reaction Engineering, fourth ed., pp. 79-142 Upper Saddle River, New Jersey.

Fuentes-Ortega, T., Martínez-Vargas, S.L., Cortés-Camargo, S., Guadarrama-Lezama, A.Y., Gallardo-Rivera, R., Baeza-Jiménez, R., & Pérez-Alonso, C. (2017). Effects of the process variables of microencapsulation sesame oil (Sesamum indica L.) by spray drying. Revista Mexicana de Ingeniería Química, 16(2), 477-490.,%20No.%202/Alim8/RMIQTemplate.pdf.

Garti, N., & McClements, D. J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Philadelphia: Woodhead Publishing Limited.

Hernández-Centeno, F., Hernández-González, M., López-De la Peña, H.Y., López-Trujillo, R., Zamudio-Flores, P.B., Ochoa-Reyes, E., Tirado-Gallegos, J.M., & Martínez-Vázquez, D.G. (2020). Changes in oxidative stability, composition and physical characteristics of oil from a non-conventional source before and after processing. Revista Mexicana de Ingeniería Química, 19(3), 1389-1400.

Hosseini S.M., Hosseini, H., Mohammadifar, M.A., Mortazavian, A.M., Mohammadi, A., Khosravi-Darani, K., Shojaee-Aliabadi, S., Dehghan, S., & Khaksar, R. (2013). Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation. International Journal of Biological Macromolecules, 62, 582-588.

Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19(5), 417-427.

Lee, E., & Choe, E. (2012). Changes in oxidation-derived off-flavor compounds of roasted sesame oil during accelerated storage in the dark. Biocatalysis and Agricultural Biotechnology, 1, 89-93. doi:10.1016/j.bcab.2011.08.003.

León-Martínez, F.M., Méndez-Lagunas, L.L., & Rodríguez-Ramírez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): effects on powder properties and characterization. Carbohydrate Polymers, 81(4), 864–70. doi:10.1016/j.carbpol.2010.03.061.

Levenspiel, O. (1999). Chemical Reaction Engineering, third ed., pp. 38-82 New York

Li, Y., Hu, M., Du, Y., Xiao, H., & McClements, D. J. (2011). Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids, 25(1), 122-130. doi:10.1016/j.foodhyd.2010.06.00.

Martín, A., Varona, S., Navarrete, A., & Cocero, M. J. (2010). Encapsulation and coprecipitation processes with supercritical fluids: Applications with essential oils. Open Chemical Engineering, 4, 31–41.

Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Alonso, S. (2003). Mechanical properties of gels formed by mixtures of mucilage gum (Opuntia ficus indica) and carrageenans. Carbohydrate Polymers, 52, 143–150.

Medina-Torres, L., García-Cruz, E.E., Calderas, F., González-Laredo, R.F, Sánchez-Olivares, G., Gallegos-Infante, J.A., Rocha-Guzmán, N.E., & Rodríguez-Ramírez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science & Technology, 50, 642–650.

Menin, A., Zanoni, F., Vakarelova, M., Chignola, R., Donà, G., Rizzi, C., Mainente, F., & Zoccatelli, G. (2018). Effects of microencapsulation by ionic gelation on the oxidative stability of flaxseed oil. Food Chemistry, 219, 293-299.

Moreno-Santander, C., García-Zapateiro, L.A., & Ortega-Toro, R. (2020). Rheological characterization of gums-gel obtained from the proteic isolate of sesame (Sesamum indicum). Revista Mexicana de Ingeniería Química, 19(1), 21-31.

Pereyra-Castro, S.C., Pérez-Pérez, V., Hernández-Sánchez, H., Jiménez-Aparicio, A., Gutiérrez-López, G.F., & Alamilla-Beltrán, L. (2019). Effect of composition and homogenization pressure of chia oil emulsions elaborated by microfluidization. Revista Mexicana de Ingeniería Química, 18(1), 69-81.

Plazola-Jacinto, C.P., Pérez-Pérez, V., Pereyra-Castro, S.C., Alamilla-Beltrán, L., & Ortiz-Moreno, A. (2019). Microencapsulation of biocompounds from avocado leaves oily extracts. Revista Mexicana de Ingeniería Química, 20(3), 1261-1276.

Pu, J., & Sathivel, S. (2011). Kinetics of lipid oxidation and degradation of flaxseed oil containing crawfish (Procambarus clarkia) astaxanthin. Journal of the American Oil Chemists’ Society, 88 (5), 595-601.

Ramos, P.E., Silva, P., Alario, M.M., Pastrana, L.M., Teixeira, J.A., Cerqueira, M.A., & Vicente, A.A. (2018). Effect of alginate molecular weight and M/G ratio in beads properties foreseeing the protection of probiotics. Food Hydrocolloids, 77, 8–16,

Rivera-Corona, J.L., Rodríguez-González, F., Rendón-Villalobos, R., García-Hernández, E., & Solorza-Feria, J. (2014). Thermal, structural and rheological properties of sorghum starch with cactus mucilage addition. LWT – Food Science & Technology, 59(2), 806–12.

Rodea-González, D.A., Cruz-Olivares, J.C., Román-Guerrero, A., Rodríguez-Huezo, M.E., Vernon-Carter, E.J., & Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 111, 102-109. doi:10.1016/j.jfoodeng.2012.01.020.

Sáenz, C., Sepúlveda, E., & Matsuhiro, B. (2004). Opuntia spp. mucilage’s: a functional component with industrial perspectives. Journal of Arid Environments, 57, 275–90. doi:10.1016/S0140-1963(03)00106-X.

Shahidi, F., & Zhong, Y. (2005). Lipid oxidation: Measurement methods. Bailey's industrial oil and Fat products. John Wiley & Sons, Inc.

Shantha, N.C., & Decker, E.A. (1994). Rapid, sensitive, iron-based spectrophotometric method for determination of peroxide values of food lipids. Journal of AOAC International, 77 (2), 421-424.

Shewan, H. M., & Stokes, J. R. (2013). Review of techniques to manufacture micro hydrogel particles for the food industry and their applications. Journal of Food Engineering, 119(4), 781-792.

Stan, C. (1999). Codex Almentarius Standard for Edible Fats and Oils, pp. 2–7.

Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2016). Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. International Journal of Biological Macromolecules, 91, 347–357.

Timilsena, Y.P., Akanbi, T.O., Khalid, N., Adhikari, B., & Barrow, C.J. (2019). Complex coacervation: Principles, mechanisms and Applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286.

Vasile, F.M., Romero, A.M., Judis, M.A., & Mazzobre, M.F. (2016). Prosopis alba exudate gum as excipient for improving fish oil stability in alginate–chitosan beads. Food Chemistry, 190, 1093-1101.

Xu-Yan, D., Ping-Ping, L., Fang, W., Mu-lan, J., Ying-Zhong, Z., Guang-Ming, L., Hong, C., & Yuan-Di, Z. (2012). The impact of processing on the profile of volatile compounds in sesame oil. European Journal of Lipid Science and Technology, 114, 277-286. doi: 10.1002/ejlt.201100059.

How to Cite
Velázquez-Gutiérrez, S., Alpizar-Reyes, E., Cruz-Olivares, J., Barrera-Pichardo, J., Rodríguez-Huezo, M., & Pérez-Alonso, C. (2020). Ionic gelation encapsulation of sesame oil with sodium alginate-nopal mucilage blends: Encapsulation efficiency and oxidative stability. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 349-362.
Food Engineering