Tolerance and accumulation of lead by endophytic association between Festuca arundinacea and Lewia sp.

  • C.S. Ortega-Aguilar
  • M. Gutiérrez-Rojas
  • A. Cruz-Hernández
Keywords: Tolerance, bioacumulation, Festuca arudinacea, Lewia sp., endophyte, lead.

Abstract

Endophyte assisted phytoremediation is an environmentally friendly alternative for the remediation and treatment of soils contaminated with heavy metals. The effect of the association between endophytic fungus (Lewia sp.) and Festuca arundinacea on the tolerance and accumulation of lead (Pb) was studied after 45 days of culture in contaminated soil. The tolerance to 2,500 mg Pb Kg-1 was quantified by biomass production and the accumulation of lead in shoots and roots. The phytoremediation potential was quantified by estimating the tolerance index (TI), the bioaccumulation factor (BCF) and translocation factor (TF). The Pb accumulation in roots (14 ± 4.2 mg g-1), was 3-fold higher in plants inoculated in comparison with only plant (3.73 ± 0.64 mg g-1); The TI was 0.76 and 0.56, the BCF was 0.31 and 0.23 for inoculated and non-inoculated plants, respectively. The TF was not detected in both cases, indicates that when working with this association there is not risk of trophic transfer of lead, according to parameters obtained, Lewia sp. improved growth and tolerance of F. arundinacea in Pb contaminated soil. The association between F. arundinacea-Lewia sp. can be considered a promising endophytic association for the remediation in situ.

References

Akter, T., Khan, S. and Rahman, M. (2019). Toxic Elements in Bangladesh’s Drinking Water. In: Environmental Contaminants: Ecological Implications and Management (Bharagava, R.N., ed.), Pp 273-296. Springer, Singapore.

Alcázar-Medina, F., Núñez-Núñez, C., Rodríguez-Rosales, M., Valle-Cervantes, S., Alarcón-Herrera, M., and Proal-Nájera, J. (2019). Lead removal from aqueous solution by spherical agglomeration using an extract Agave lechuguilla Torr. as biosurfactant. Revista Mexicana De Ingeniería Química 19(1), 71-84.

Begonia, M.T., Begonia, G.B., Ighoavodha, M. and Gilliard, D. (2005). Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. International Journal of Environmental Research and Public Health 2(2), 228-233.

Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465.

Buendía-González, L., Cruz-Sosa, F., Rodríguez-Huezo, M., Barrera-Díaz, C., Hernández-Jaimes, C., and Orozco-Villafuerte, J. (2019). In vitro simultaneous accumulation of multiple heavy metals by Prosopis laevigata seedlings cultures. Revista Mexicana De Ingeniería Química 18(3), 1167-1177.

Cheema, S.A., Khan, M.I., Tang, X., Zhang, C., Shen, C. and Malik, Z. (2009). Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). Journal of Hazardous Materials 166, 1226-1231.

Colpaert, J.V., Wevers, J.H.L., Krznaric, E. and Adriaensen, K. (2011). How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68, 17-24.

Cruz-Hernández, A., Tomasini-Campocosio, A., Pérez-Flores, L.J., Fernández-Perrino, F.J. and Gutiérrez-Rojas, M. (2013). Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant and Soil 362, 261-270.

Deng, H., Ye, Z.H. and Wong, M.H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution 132, 29-40.

Diwan, H., Ahmad, A. and Iqbal, M. (2010). Uptake-related parameters as indices of phytoremediation potential. Biologia 65, 1004-1011.

Gao, Y. and Ling, W. (2006). Comparison for plant uptake of phenanthrene and pyrene from soil and water. Biology and Fertility of Soils 42,387-394.

Kabata-Pendias, A. (2001). Trace Elements in Soils and Plants. CRC Press LLC, New York.

Kumar, A., Chaturvedi, A.K., Yadav, K., Arunkumar, K.P., Malyan, S.K., Raja, P., Kumar, R., Khan, S.A., Kumar, K., Rana, K.L., Kour, D., Yadav, N. and Nath, A. (2019). Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. In: Recent Advancement in White Biotechnology Through Fungi. Fungal Biology (Yadav, A., Singh, S., Mishra, S., Gupta, A., eds.), Pp 437-461. Springer, Cham.

Liphadzi, M.S. and Kirkham, M.B. (2005). Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment. South African Journal of Botany 71(1), 24-37.

Lledó, S., Rodrigo, S. and Poblaciones, M.J. (2015). Biomass yield, mineral content, and nutritive value of Poa pratensis as affected by non-clavicipitaceous fungal endophytes. Mycological Progress 14, 67.

Mendarte-Alquisira, C., Gutiérrez-Rojas, M., González-Márquez, H. and Volke-Sepúlveda, T. (2017). Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant and Soil 411, 347-358.

Motsara, M.R. and Roy, R.N. (2008). Guide to laboratory establishment for plant nutrient analysis; FAO. Rome, Italy.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Diario Oficial de la Federación. 2 de marzo de 2007.

Ortíz, V.B. and Ortíz, S.C.A. (1984). Prácticas de Edafología.Universidad Autónoma de Chapingo. Chapingo, Mexico.

Ozyigit, I.I. and Dogan, I. (2015). Plant-microbe interactions in phytoremediation. In: Soil Remediation and Plants: Prospects and Challenges, (K. Hakeem, M. Sabir, M. Ozturk, A.R. Mermut, eds.), Pp. 255-272. Elsevier, New York.

Pansu, M. (2006). Handbook of Soil Analysis. Springer-Verlag, Berlin, Germany.

Reyes, I. (1996). Fundamentos teórico-prácticos de temas selectos de la ciencia del suelo Parte I. 53390, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico.

Rojas-Loria, C.C., Favela-Torres, E., González-Márquez, H. and Volke-Sepúlveda, T.L. (2014). Role of glutathione and glutathione S-transferase in lead tolerance and bioaccumulation by Dodonaea viscosa (L.) Jacq. Acta Physiologiae Plantarum 36, 2501-2510.

Salas-Luevano, M.A. and Vega-Carrillo, H.R. (2016). Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico. Environmental Earth Sciences 75, 408.

Salas-Luevano, M.A., Mauricio‑Castillo, J.A., González‑Rivera, M.L., Vega‑Carrillo, H.R. and Salas‑Muñoz, S. (2017). Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environmental Earth Sciences 76, 806.

Soleimani M., Afyni M., Hajabbasi M.A., Nourbakhsh F., Sabzalian M.R. and Christensen J.H. (2010). Phytoremediation of an aged petroleum contsminated soil using endophyte infected and non-infected grasses. Chemosphere 81, 1084-1090.

Staunton, S. (2002). Direct and indirect effects of organic matter on metal immobilisation in soil. Developments in Soil Science 28A, 79-97.

Steliga, T. and Kluk, D. (2020). Application of Festuca arundinacea in phytoremediation of soil contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicology and Environmental Safety 194, 110409.

Sudová, R. and Vosátka M. (2007). Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil 296, 77.

Suttle, N.F. (2010). Mineral nutrition of livestock. CABI Publishing, United Kingdom.

Uzma, F., Mohan, C.D., Siddaiah, C.N. and Chowdappa, S. (2019). Endophytic Fungi: Promising Source of Novel Bioactive Compounds. In: Advances in Endophytic Fungal Research, Fungal Biology (Singh, B.P. ed.) Springer Nature Switzerland.

Veihmeyer, F.J. and Hendrickson, A.H. (1931). The moisture equivalent as a measure of the field capacity of soil. Soil Science 32, 181-194.

Velázquez‐Osornio, D.T. 2011. Aislamiento de hongos endófitos de plantas tolerantes a plomo para su potencial uso en fitorremediación. Tesis de Especialidad en Biotecnología. Universidad Autónoma Metropolitana Unidad Iztapalapa, México.

Wasilkowski, D., Nowak, A., Michalska, J. and Mrozik, A. (2019). Ecological restoration of heavy metal-contaminated soil using Na-bentonite and green compost coupled with the cultivation of the grass Festuca arundinacea. Ecological Engineering 138, 420-433.

Yousaf, S., Afzal, M., Anees, M., Malik, R.N., and Campisano, A. (2014). Ecology and functional potential of endophytes in bioremediation: a molecular perspective. In: Advances in Endophytic Research (Verma, V.C.; Gange, A.C. eds.) Pp 301-320 Springer, India.

Zabalgogeazcoa, I., García-Ciudad, A., Vázquez de Aldana, B.R. and García-Criado, B. (2006). Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. European Journal of Agronomy 24, 374-384.

Zamani, N., Sabzalian, M.R., Khoshgoftarmanesh, A. and Afyuni M. (2015). Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne. International Journal of Phytoremediation 17, 456-463.

Zhao, S., Jia, L. and Duo, L. (2013). The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching. Bioresource Technology 129, 249-255.

Published
2020-05-29
How to Cite
Ortega-Aguilar, C., Gutiérrez-Rojas, M., & Cruz-Hernández, A. (2020). Tolerance and accumulation of lead by endophytic association between Festuca arundinacea and Lewia sp. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 151-160. https://doi.org/10.24275/rmiq/Bio1649
Section
Biotechnology