Biotechnological processes improved with electric fields: the importance of operational parameters selection

Keywords: electric field, solid surface modifications, metabolism modifications, pH gradient, electric resistance


The imposition of electric fields on a porous media has been a useful tool for biotechnological processes improvement, mainly in environmental engineering; however, the success in its reproducibility depends on the standardized methodology rather than empirical results. This work describes three experimental cases: Aspergillus brasiliensis attached to perlite for emulsifier protein production, Metarhizium anisopliae as a biologic control of insect pests and the characterization of a hydrocarbon contaminated soil. The standardized methodology is independent of the biotechnological purposes and consists of: (i) establishment of current density in which porous media behaved as an electric resistance (0–2.5, 0-0.6 and 0-0.85 mA cm-2, for perlite, rice-corn mixture and soil, respectively). (ii) establishment of a current density in which cell potential is constant, to make sure that no gradient of nutrients concentration is formed and (iii) pH gradient evaluation as a consequence of water oxidation/reduction electrochemical reactions and the charge transport capability across the porous media. As a result of the aforementioned standardization three sections of packed porous media on electrochemical cell would be obtained: anodic (acidified), middle (neutral) and cathodic (alkalinized), which have different physicochemical properties and promote also different metabolic responses when they are used as supports for solid-state culture.


Acar, Y. B.; Alshawabkeh, A. N., 1993. Principles of electro-kinetic remediation. Environ Sci Technol. 27, 2638-2647.
Alizadeh, A.; Jin, X.; Wang, M. 2019. Pore‐scale study of ion transport mechanisms in inhomogeneously charged nanoporous rocks: Impacts of interface properties on macroscopic transport. J Geophys Res Solid Earth. 124, 5387– 5407.
Araújo, O. Q. F.; Coelho, M. A. Z.; Margarit, I. C. P.; Vaz-Junior, C. A.; Rocha-Leão, M. H. M. 2004. Electrical stimulation of Saccharomyces cerevisiae culture. Braz. J. Microbiol. 35, 97-103.Cérémonie, H.; Dudal, Y.; Buret, F. 2008. Pulsed electric field induced redistribution of fluorescent compounds from water-extractable soil organic matter. Eur J Soil Biol. 44, 10-17.
Calace, N.; Fiorentini, F.; Petronio, B. M.; Pietroletti, M. 2001. Effects of acid rain on soil humic compounds. Talanta. 54, 837-846.
Cheng, F.; Guo, S.; Li, G.; Wang, S.; Li, F.; Wu, B. 2017. The loss of mobile ions and the aggregation of soil colloid: Results of the electrokinetic effect and the cause of termination. Electrochim Acta. 258, 1016-1024.
Curtin, D.; Peterson, M. E.; Anderson, C. R. 2016. pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy. Geoderma. 271, 161-172.
Gill, R. T.; Harbottle, M. J.; Smith, J. W. N.; Thornton, S. F. 2014. Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications. Chemosphere. 107, 31-42.
Guo, S.; Fan, R.; Li, T.; Hartog, N.; Li, F.; Yang X. 2014. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere. 109, 226-233.
Huang, D.; Xu, Q.; Cheng, J.; Lu, X.; Zhang, H. 2012. Electrokinetic Remediation and Its Combined Technologies for Removal of Organic Pollutants from Contaminated Soils. Int J Electrochem Sci. 7, 4528-4544.
Jackman, A. S.; Maini, G.; Sharman, K. A.; Knowles, J. C. 1999. The effects of direct electric current on the viability and metabolism of acidophilic bacteria. Enzyme Microb Technol. 24, 316-324.
Lear, G.; Harbottle, M. J.; van der Gast, C. J.; Jackman, S. A.; Knowles, C. J.; Sills, G.; Thompson, I. P. 2004. The effect of electrokinetics on soil microbial communities, Soil Biol. Biochem. 36, 1751-1760.
Matsumoto, S.; Ogata, S.; Shimada, H.; Sasaoka, T.; Hamanaka, A.; Kusuma, G. J. 2018. Effects of pH-induced changes in soil physical characteristics on the development of soil water erosion. Geosciences. 8, 134.
O’Brien, P.L.; DeSutter, T.M.; Casey, F.X.M.; Wick, A. F. Khan, E. 2017. Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques. Curr Pollution Rep 3, 192–205.
Pamukcu S., Wittle, J.K. 1993. Electrokinetically enhanced in situ soil decontamination, in Remediation of hazardous waste Contaminated Soils, Marcel Dekker, Inc., New York. Pp 245-294.
Pazos, M.; Plaza, A.; Martín, M.; Lobo, M. C. 2012. The impact of electrokinetic treatment on a loamy-sand soil properties. Chen Eng. J. 183, 231-237.
Rashad, M.; Dultz, S.; Guggenberger, G. 2010. Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type. Geoderma. 158, 385-391.
Sánchez-Vázquez, V.; Shirai, K.; González, I.; Gutiérrez-Rojas, M. 2018. Polycyclic aromatic hydrocarbon-emulsifier protein produced by Aspergillus brasiliensis (niger) in an airlift bioreactor following an electrochemical pretreatment. Bioresour Technol. 256, 408-413.
Terashima, M.; Fukushima, M.; Tanaka, S. 2004. Influence of pH on the surface activity of humic acid: micelle-like aggregate formation and interfacial adsorption. Colloids Surf. A Physicochem. Eng. Asp. 247, 77-83.
Trasatti, S. 2000. Electrocatalysis: understanding the success of DSA. Electrochim Acta. 45, 2377-2385.
Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; Van Hullebuscj, E. D.; Esposito, G.; Oturan, M. A. 2016. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J Hazard Mater. 306, 149-174.
Übner, M.; Lepane, V.; Lopp, M.; Kaljurand, M. 2004. Electrophoretic aggregation of humic acid. J. Chromatogr A. 1045, 253-258.
Velasco-Alvarez, N.; González, I.; Matsumura, D.; Gutiérrez-Rojas, M. 2011. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system. Bioresour Technol. 102, 1509-1515.
Virkutyte, J.; Sillanpää, M.; Latostenmaa, P. 2002. Electrokinetic soil remediation – critical overview. Sci Total Environ. 289, 97-121.
Wang, X.; Wan, G.; Shi, L.; Gao, X.; Zhang, X.; Li, X.; Zhao, J.; Sha, B.; Huang, Z. 2019. Direct micro-electric stimulation alters phenanthrene-degrading metabolic activities of Pseudomonas sp. strain DGYH-12 in modified bioelectrochemical system. Environ Sci Pollut Res. 26, 31449-31462.
Yeung, A. T.; Gu, Y. 2011. A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater. 195, 11-29.
How to Cite
Gómez-Flores, P., Velasco-Álvarez, N., González, I., & Sánchez-Vázquez, V. (2020). Biotechnological processes improved with electric fields: the importance of operational parameters selection. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 111-121.