Dextran synthesis by native sugarcane microorganisms

  • J.D. Castilla-Marroquín
  • R. Hernández-Martínez
  • H. Debernardi de la Vequia
  • M.A. Ríos-Corripio
  • J. Hernández-Rosas
  • M. Rojas López
  • F. Hernández-Rosas
Keywords: Biopolymers, Dextransucrase, Dextran, Extracellular Polymeric Substances, Sucrose.

Abstract

The sugarcane agri-food industry boosts the Mexican economy in producing regions. Basing its relevance in sugar production yields. However, by-products are not widely exploited leaving an opportunity for diversification.  In this study, three microorganism isolates (A, B, and C) were obtained from sugarcane kefir; the morphology of isolates B and C corresponded to the lactic acid bacterial genus Leuconostoc. Thus, we examined the potential for these isolates to produce EPSs, like dextran, a molecule with applications in pharmaceuticals, industrials, and foods. The experiment was performed adjusting the active culture concentration to 1 x 106 colony-forming units (CFU)/ml, the culture was maintained at 37°C in agitation at 150 rpm. The obtained EPSs were purified by ethanol and cold acetone precipitation. The results showed that B and C bacterial isolates had the capacity to produce EPSs (14 g/L for isolate B and 32 g/L for isolate C) after 24 h. Fourier-transform infrared spectroscopy (FT-IR) characterization indicated that the EPS was dextran. Further, the produced biopolymer had high solubility in water, avoided freezing at -4°C, and boiled at 85°C.

References

Aguilar-Rivera, N. (2017). Estrategias metodológicas para el análisis de la reconversión y diversificación productiva de regiones cañeras. Cuadernos Geográficos, 56, 172–192.
Aguilar-Rivera, N. (2019). A framework for the analysis of socioeconomic and geographic sugarcane agro industry sustainability. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2018.07.006
Aman, A., Siddiqui, N. N., & Qader, S. A. U. (2012). Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2011.08.094
Anaya-Reza, O., & López-Arenas, T. (2017). Design of a Sustainable Biorefinery for the Production of Lactic Acid from Sugarcane Molasses. Rev Mex Ing Quim. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Anaya
Bailey, R. W., & Oxford, A. E. (1958). A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. J. Gen. Microbiol. https://doi.org/10.1099/00221287-19-1-130
Bhatia, S., Jyoti, Uppal, S. K., Thind, K. S., & Batta, S. K. (2009). Post harvest quality deterioration in sugarcane under different environmental conditions. Sugar Tech. https://doi.org/10.1007/s12355-009-0023-7
CONADESUCA. (2019). Balance Nacional de azúcar ciclo 2018/2019.
Cuervo Mulet, R., Ledesma, J., & Durán Vanegas, J. (2010). Aislamiento y control microbiológico de leuconostoc mesenteroides, en un ingenio para optimizar el rendimiento de azucar y etanol. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA.
Davidović, S., Miljkovic, M., Antonovic, D., Rajilic-Stojanovic, M., & Dimitrijevic-Brankovic, S. (2014). Water Kefir grain as a source of potent dextran producing lactic acid bacteria. Hem. Ind. https://doi.org/10.2298/hemind140925083d
Davidović, S., Miljković, M., Tomić, M., Gordić, M., Nešić, A., & Dimitrijević, S. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2017.12.061
de Melo Pereiraa, G. V., Karp, S. G., Letti, L. A. J., Pagnoncelli, M. G. B., Finco, A. M., Machado, M. R., & Soccol, C. R. (2019). Bioactive Polysaccharides Produced by Microorganisms: Production and Applications. In High Value Fermentation Products, (Scrivener Publishing, Wiley, eds.), Pp. 231-251 https://doi.org/10.1002/9781119555384.ch12
Dubois, M., Hamilton, J. K., Rebers, P. A., Smith, F., & Gilles, K. A. (1956). Colorimetric Method for Determination of Sugars. Anal Chem.
González-Leos, A., Bustos-Vázquez, M. G., Rodríguez-Castillejos, G. C., Rodríguez-Durán, L. V., & Del Ángel-Del Ángel, A. (2020). Kinetics of lactic acid fermentation from sugarcane bagasse by lactobacillus pentosus. Rev. Mex. Ing. Quim. https://doi.org/10.24275/rmiq/Alim618
Guidechem. (2019). Dextran Material Safety Data Sheet(MSDS). https://www.guidechem.com/msds/9004-54-0.html
Han, J., Hang, F., Guo, B., Liu, Z., You, C., & Wu, Z. (2014). Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2014.06.035
He, M. xiong, Qin, H., Yin, X. bo, Ruan, Z. yong, Tan, F. rong, Wu, B., Shui, Z. xia, Dai, L. chun, & Hu, Q. chun. (2014). Direct ethanol production from dextran industrial waste water by Zymomonas mobilis. Korean J Chem Eng. https://doi.org/10.1007/s11814-014-0108-1
Hedderich, R., Müller, R., Greulich, Y., Bannert, N., Holland, G., Kaiser, P., & Reissbrodt, R. (2011). Mechanical damage to Gram-negative bacteria by surface plating with the Drigalski-spatula technique. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2011.02.005
Hemme, D., & Foucaud-Scheunemann, C. (2004). Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. In Int. Dairy J. https://doi.org/10.1016/j.idairyj.2003.10.005
Heerden, P. D. R., Eggleston, G., & Donaldson, R. A. (2013). Ripening and Postharvest Deterioration. In Sugarcane: Physiology, Biochemistry, and Functional Biology, (1st edn. Wiley, eds.), pp 72-79 https://doi.org/10.1002/9781118771280.ch4
Higgins, A., Thorburn, P., Archer, A., & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agric Syst, 94(3), 611–621. https://doi.org/10.1016/j.agsy.2007.02.011
Holzapfel, W. H., Björkroth, J. A., & Dicks, L. M. T. (2015). Leuconostoc. In Bergey’s Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608.gbm00607
Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources. https://doi.org/10.15376/biores.8.2.3157-3176
Juven, B. J. (1979). A Simple Method for Long‐term Preservation of Stock Cultures of Lactic Acid Bacteria. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.1979.tb01197.x
Leemhuis, H., Pijning, T., Dobruchowska, J. M., van Leeuwen, S. S., Kralj, S., Dijkstra, B. W., & Dijkhuizen, L. (2013). Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2012.06.037
Lenshin, A. S., Kashkarov, V. M., Seredin, P. V., Spivak, Y. M., & Moshnikov, V. A. (2011). XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates. Semiconductors. https://doi.org/10.1134/s1063782611090168
Long, Z., Liu, H., Li, J., Sun, J., Xue, Y., Hu, Z., Su, Z., Xu, C., & Yan, J. K. (2019). Preliminary characterization of exopolysaccharides produced by Abortiporus biennis in submerged fermentation. Sains Malaysiana. https://doi.org/10.17576/jsm-2019-4812-04
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. https://doi.org/10.1021/ac60147a030
Moosavi-Nasab, M. (Shiraz U., Gavahian, M., Yousefi, A. R., & Askari, H. (2010). Fermentative Production of Dextran using Food Industry Wastes. World Academy of Science, Engineering and Technology.
Naessens, M., Cerdobbel, A., Soetaert, W., & Vandamme, E. J. (2005). Leuconostoc dextransucrase and dextran: Production, properties and applications. In J Chem Technol and Biot. https://doi.org/10.1002/jctb.1322
Nair, P. S., & Surendran, P. K. (2005). Biochemical Characterization of Lactic Acid Bacteria Isolated From Fish and Prawn. J Cult Collect, 4, 48–52.
Nieto-Arribas, P., Seseña, S., Poveda, J. M., Palop, L., & Cabezas, L. (2010). Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol. https://doi.org/10.1016/j.fm.2009.08.006
Oropeza-De la Rosa, E., López-ávila, L. G., Luna-Solano, G., Urrea-García, G. R., & Cantú-Lozano, D. (2019). Dextran hydrolysis and its rheology in mashes from bioethanol production process. Rev. Mex. Ing. Quim. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Oropeza
Paulo, E. M., Boffo, E. F., Branco, A., Valente, Â. M. M. P., Melo, I. S., Ferreira, A. G., Roque, M. R. A., & de Assis, S. A. (2012). Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. An Acad Bras Cienc. https://doi.org/10.1590/S0001-37652012000200018
Pippo, W. A., & Luengo, C. A. (2013). Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int J Energy Environ Eng, 4(1), 10. https://doi.org/10.1186/2251-6832-4-10
Rani, R. P., Anandharaj, M., Sabhapathy, P., & Ravindran, A. D. (2017). Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2016.11.122
Rojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., & Bonilla, R. (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ Sci. https://doi.org/10.11144/Javeriana.SC18-2.etmp
Santos, F., Eichler, P., Machado, G., De Mattia, J., & De Souza, G. (2020). By-products of the sugarcane industry. In Sugarcane Biorefinery, Technology and Perspectives. https://doi.org/10.1016/b978-0-12-814236-3.00002-0
Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci. https://doi.org/10.7150/ijbs.4.379
Selvi, S. S., Eminagic, E., Kandur, M. Y., Ozcan, E., Kasavi, C., & Oner, E. T. (2019). Research and Production of Microbial Polymers for Food Industry. In Bioprocessing for Biomolecules Production, (Wiley, eds.), Pp 211-238. https://doi.org/10.1002/9781119434436.ch10
Sentíes-Herrera, H. E., Trejo-Téllez, L. I., & Gómez-Merino, F. C. (2017). The Mexican sugarcane production system: History, current status and new trends. In Sugarcane: Production Systems, Uses and Economic Importance, (Nova, eds.), Pp 39-71.
Sharmila, G., Muthukumaran, C., Kumar, N. M., Sivakumar, V. M., & Thirumarimurugan, M. (2020). Food waste valorization for biopolymer production. In Current Developments in Biotechnology and Bioengineering, (Elsevier, eds.), Pp 233-249. https://doi.org/10.1016/b978-0-444-64321-6.00012-4
Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res. https://doi.org/10.1016/S0008-6215(02)00209-4
Solomon, S. (2011). Sugarcane By-Products Based Industries in India. Sugar Tech. https://doi.org/10.1007/s12355-011-0114-0
Srinivas, B., & Naga Padma, P. (2014). Screening of Diverse Micronutrients and Macronutrients For Dextran Production by Weissella sp Using Plackett-Burman Design. Int. J. Sci. Res.
Thomson, W. A., Kohler, M., & Stark, A. (2017). An economic analysis of the potential bio-polymer industry: the case of sugarcane. Proceedings of the Annual Congress - South African Sugar Technologists’ Association, No.90, 411–414. http://sasta.co.za/publications/congress-proceedings
Vettori, M. H. P. B., Franchetti, S. M. M., & Contiero, J. (2012). Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2012.02.048
Ye, G., Li, G., Wang, C., Ling, B., Yang, R., & Huang, S. (2019). Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohy Polym. https://doi.org/10.1016/j.carbpol.2018.11.092
Yildiz, H., & Karatas, N. (2018). Microbial exopolysaccharides: Resources and bioactive properties. Process Biochem. 72. https://doi.org/10.1016/j.procbio.2018.06.009
Published
2020-06-29
How to Cite
Castilla-Marroquín, J., Hernández-Martínez, R., Debernardi de la Vequia, H., Ríos-Corripio, M., Hernández-Rosas, J., Rojas López, M., & Hernández-Rosas, F. (2020). Dextran synthesis by native sugarcane microorganisms. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 177-185. https://doi.org/10.24275/rmiq/Bio1793
Section
Biotechnology