Dextran synthesis by native sugarcane microorganisms

  • J.D. Castilla-Marroquín
  • R. Hernández-Martínez
  • H. Debernardi de la Vequia
  • M.A. Ríos-Corripio
  • J. Hernández-Rosas
  • M. Rojas López
  • F. Hernández-Rosas
Keywords: Biopolymers, Dextransucrase, Dextran, Extracellular Polymeric Substances, Sucrose.


The sugarcane agri-food industry boosts the Mexican economy in producing regions. Basing its relevance in sugar production yields. However, by-products are not widely exploited leaving an opportunity for diversification.  In this study, three microorganism isolates (A, B, and C) were obtained from sugarcane kefir; the morphology of isolates B and C corresponded to the lactic acid bacterial genus Leuconostoc. Thus, we examined the potential for these isolates to produce EPSs, like dextran, a molecule with applications in pharmaceuticals, industrials, and foods. The experiment was performed adjusting the active culture concentration to 1 x 106 colony-forming units (CFU)/ml, the culture was maintained at 37°C in agitation at 150 rpm. The obtained EPSs were purified by ethanol and cold acetone precipitation. The results showed that B and C bacterial isolates had the capacity to produce EPSs (14 g/L for isolate B and 32 g/L for isolate C) after 24 h. Fourier-transform infrared spectroscopy (FT-IR) characterization indicated that the EPS was dextran. Further, the produced biopolymer had high solubility in water, avoided freezing at -4°C, and boiled at 85°C.


Aguilar-Rivera, N. (2017). Estrategias metodológicas para el análisis de la reconversión y diversificación productiva de regiones cañeras. Cuadernos Geográficos, 56, 172–192.
Aguilar-Rivera, N. (2019). A framework for the analysis of socioeconomic and geographic sugarcane agro industry sustainability. Socio-Economic Planning Sciences.
Aman, A., Siddiqui, N. N., & Qader, S. A. U. (2012). Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohyd Polym.
Anaya-Reza, O., & López-Arenas, T. (2017). Design of a Sustainable Biorefinery for the Production of Lactic Acid from Sugarcane Molasses. Rev Mex Ing Quim.
Bailey, R. W., & Oxford, A. E. (1958). A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. J. Gen. Microbiol.
Bhatia, S., Jyoti, Uppal, S. K., Thind, K. S., & Batta, S. K. (2009). Post harvest quality deterioration in sugarcane under different environmental conditions. Sugar Tech.
CONADESUCA. (2019). Balance Nacional de azúcar ciclo 2018/2019.
Cuervo Mulet, R., Ledesma, J., & Durán Vanegas, J. (2010). Aislamiento y control microbiológico de leuconostoc mesenteroides, en un ingenio para optimizar el rendimiento de azucar y etanol. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA.
Davidović, S., Miljkovic, M., Antonovic, D., Rajilic-Stojanovic, M., & Dimitrijevic-Brankovic, S. (2014). Water Kefir grain as a source of potent dextran producing lactic acid bacteria. Hem. Ind.
Davidović, S., Miljković, M., Tomić, M., Gordić, M., Nešić, A., & Dimitrijević, S. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohyd Polym.
de Melo Pereiraa, G. V., Karp, S. G., Letti, L. A. J., Pagnoncelli, M. G. B., Finco, A. M., Machado, M. R., & Soccol, C. R. (2019). Bioactive Polysaccharides Produced by Microorganisms: Production and Applications. In High Value Fermentation Products, (Scrivener Publishing, Wiley, eds.), Pp. 231-251
Dubois, M., Hamilton, J. K., Rebers, P. A., Smith, F., & Gilles, K. A. (1956). Colorimetric Method for Determination of Sugars. Anal Chem.
González-Leos, A., Bustos-Vázquez, M. G., Rodríguez-Castillejos, G. C., Rodríguez-Durán, L. V., & Del Ángel-Del Ángel, A. (2020). Kinetics of lactic acid fermentation from sugarcane bagasse by lactobacillus pentosus. Rev. Mex. Ing. Quim.
Guidechem. (2019). Dextran Material Safety Data Sheet(MSDS).
Han, J., Hang, F., Guo, B., Liu, Z., You, C., & Wu, Z. (2014). Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohyd Polym.
He, M. xiong, Qin, H., Yin, X. bo, Ruan, Z. yong, Tan, F. rong, Wu, B., Shui, Z. xia, Dai, L. chun, & Hu, Q. chun. (2014). Direct ethanol production from dextran industrial waste water by Zymomonas mobilis. Korean J Chem Eng.
Hedderich, R., Müller, R., Greulich, Y., Bannert, N., Holland, G., Kaiser, P., & Reissbrodt, R. (2011). Mechanical damage to Gram-negative bacteria by surface plating with the Drigalski-spatula technique. Int J Food Microbiol.
Hemme, D., & Foucaud-Scheunemann, C. (2004). Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. In Int. Dairy J.
Heerden, P. D. R., Eggleston, G., & Donaldson, R. A. (2013). Ripening and Postharvest Deterioration. In Sugarcane: Physiology, Biochemistry, and Functional Biology, (1st edn. Wiley, eds.), pp 72-79
Higgins, A., Thorburn, P., Archer, A., & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agric Syst, 94(3), 611–621.
Holzapfel, W. H., Björkroth, J. A., & Dicks, L. M. T. (2015). Leuconostoc. In Bergey’s Manual of Systematics of Archaea and Bacteria.
Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources.
Juven, B. J. (1979). A Simple Method for Long‐term Preservation of Stock Cultures of Lactic Acid Bacteria. J. Appl. Microbiol.
Leemhuis, H., Pijning, T., Dobruchowska, J. M., van Leeuwen, S. S., Kralj, S., Dijkstra, B. W., & Dijkhuizen, L. (2013). Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol.
Lenshin, A. S., Kashkarov, V. M., Seredin, P. V., Spivak, Y. M., & Moshnikov, V. A. (2011). XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates. Semiconductors.
Long, Z., Liu, H., Li, J., Sun, J., Xue, Y., Hu, Z., Su, Z., Xu, C., & Yan, J. K. (2019). Preliminary characterization of exopolysaccharides produced by Abortiporus biennis in submerged fermentation. Sains Malaysiana.
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem.
Moosavi-Nasab, M. (Shiraz U., Gavahian, M., Yousefi, A. R., & Askari, H. (2010). Fermentative Production of Dextran using Food Industry Wastes. World Academy of Science, Engineering and Technology.
Naessens, M., Cerdobbel, A., Soetaert, W., & Vandamme, E. J. (2005). Leuconostoc dextransucrase and dextran: Production, properties and applications. In J Chem Technol and Biot.
Nair, P. S., & Surendran, P. K. (2005). Biochemical Characterization of Lactic Acid Bacteria Isolated From Fish and Prawn. J Cult Collect, 4, 48–52.
Nieto-Arribas, P., Seseña, S., Poveda, J. M., Palop, L., & Cabezas, L. (2010). Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol.
Oropeza-De la Rosa, E., López-ávila, L. G., Luna-Solano, G., Urrea-García, G. R., & Cantú-Lozano, D. (2019). Dextran hydrolysis and its rheology in mashes from bioethanol production process. Rev. Mex. Ing. Quim.
Paulo, E. M., Boffo, E. F., Branco, A., Valente, Â. M. M. P., Melo, I. S., Ferreira, A. G., Roque, M. R. A., & de Assis, S. A. (2012). Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. An Acad Bras Cienc.
Pippo, W. A., & Luengo, C. A. (2013). Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int J Energy Environ Eng, 4(1), 10.
Rani, R. P., Anandharaj, M., Sabhapathy, P., & Ravindran, A. D. (2017). Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int. J. Biol. Macromol.
Rojas-Tapias, D., Ortiz-Vera, M., Rivera, D., Kloepper, J., & Bonilla, R. (2013). Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ Sci.
Santos, F., Eichler, P., Machado, G., De Mattia, J., & De Souza, G. (2020). By-products of the sugarcane industry. In Sugarcane Biorefinery, Technology and Perspectives.
Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci.
Selvi, S. S., Eminagic, E., Kandur, M. Y., Ozcan, E., Kasavi, C., & Oner, E. T. (2019). Research and Production of Microbial Polymers for Food Industry. In Bioprocessing for Biomolecules Production, (Wiley, eds.), Pp 211-238.
Sentíes-Herrera, H. E., Trejo-Téllez, L. I., & Gómez-Merino, F. C. (2017). The Mexican sugarcane production system: History, current status and new trends. In Sugarcane: Production Systems, Uses and Economic Importance, (Nova, eds.), Pp 39-71.
Sharmila, G., Muthukumaran, C., Kumar, N. M., Sivakumar, V. M., & Thirumarimurugan, M. (2020). Food waste valorization for biopolymer production. In Current Developments in Biotechnology and Bioengineering, (Elsevier, eds.), Pp 233-249.
Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res.
Solomon, S. (2011). Sugarcane By-Products Based Industries in India. Sugar Tech.
Srinivas, B., & Naga Padma, P. (2014). Screening of Diverse Micronutrients and Macronutrients For Dextran Production by Weissella sp Using Plackett-Burman Design. Int. J. Sci. Res.
Thomson, W. A., Kohler, M., & Stark, A. (2017). An economic analysis of the potential bio-polymer industry: the case of sugarcane. Proceedings of the Annual Congress - South African Sugar Technologists’ Association, No.90, 411–414.
Vettori, M. H. P. B., Franchetti, S. M. M., & Contiero, J. (2012). Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohyd Polym.
Ye, G., Li, G., Wang, C., Ling, B., Yang, R., & Huang, S. (2019). Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohy Polym.
Yildiz, H., & Karatas, N. (2018). Microbial exopolysaccharides: Resources and bioactive properties. Process Biochem. 72.
How to Cite
Castilla-Marroquín, J., Hernández-Martínez, R., Debernardi de la Vequia, H., Ríos-Corripio, M., Hernández-Rosas, J., Rojas López, M., & Hernández-Rosas, F. (2020). Dextran synthesis by native sugarcane microorganisms. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 177-185.