Industrial wastewater treatment by anaerobic digestion using a solar heater as renewable energy for temperature-control

  • M.D. Gómez-Paredes
  • I.A. Hernández-Rodríguez
  • J. López-Ortega
  • G. González-Blanco
  • R. Beristain-Cardoso
Keywords: solar-heater, anaerobic-digestion, temperature-control, wastewater


The clean energies have been the only renewable energies that are capable to replace the use of fossil fuels. The use of clean energies in Wastewater Treatments Plants would decrease the operating costs. In the present work, a solar heater of 8 tubes was used for controlling the temperature of an UASB reactor in order to treat a mixture of industrial wastewater under anaerobic digestion. The reactor was operated at three temperatures (16, 20, and 30 ºC), at organic loading rate of 11 g COD/L-d, HRT of 6 h, and during a period of 100 days. In addition, the effect of a co-substrate on COD consumption was evaluated, in batch cultures. In the steady-state, COD removal efficiencies were 8.6, 20, and 40 %, for 16, 20, and 30 ºC, respectively. Increasing the temperature enhanced the methane production, achieving in average 257 ± 8.6 ml CH4/ g COD removed. In batch cultures, 200 and 400 mg glucose/L used as co-substrate significantly improved the removal and COD consumption rates. Finally, a solar heater might be feasible and economical technology for temperature-control of an UASB reactor in order to improve the organic matter removal.  


Alzate-Ibanez, A. M. (2018). States and variables estimation in an upflow anaerobic sludge blanket reactor for the leachate wastewater treatment using nonlinear observers. Revista Mexicana de Ingeniería Química 17, 723–738.

APHA AWWAW (2005) Standard Methods for Examination of Water and Wastewater, 21th. APHA, AWWA, WPCR, 1, New York.

Appels, L., Baeyens, J., Degrève, J., and Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in energy and combustion science 34, 755–781.

Arshad, A., Hashim, N.H., Kashif, A.K., and Bashir, A. (2011). Assessment of the Treatment of Textile Mill Effluent Using UASB Reactor. ASEAN Journal on Science and Technology for Development 28, 139–150.

Bhatti, Z.I. (1995). Problems encountered during the start-up of UASB reactor. Japanese Journal of Water Treatment and Biology 31, 59–62.

Bialek, K., Cysneiros, D., and O’Flaherty, V. (2013). Low-temperature (10 ºC) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: Microbial community structure, population dynamics, and kinetics of methanogenic populations. Archaea, 2013.

Bialek, K., Kumar, A., Mahony, T., Lens, P.N., and O'Flaherty, V. (2012). Microbial community structure and dynamics in anaerobic fluidized‐bed and granular sludge‐bed reactors: influence of operational temperature and reactor configuration. Microbial Biotechnology 5, 738–752.

Botheju, D., and Bakke, R. (2011). Oxygen effects in anaerobic digestion–a review. Open Waste Management Journal 4, 1–19.

Chen, H., Wang, W., Xue, L., Chen, C., Liu, G., and Zhang, R. (2016). Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community. Energy & Fuels 30, 5749–5757.

Cioabla, A.E., Ionel, I., Dumitrel, G.A., and Popescu, F. (2012). Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnology for Biofuels 5, 1–9.

Cysneiros, D., Thuillier, A., Villemont, R., Littlestone, A., Mahony, T., and O'Flaherty, V. (2011). Temperature effects on the trophic stages of perennial rye grass anaerobic digestion. Water Science and Technology 64, 70–76.

Donoso-Bravo, A., Retamal, C., Carballa, M., Ruiz-Filippi, G., and Chamy, R. (2009). Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application. Water science and Technology 60, 9–17.

Fukuzaki, S., Nishio, N., and Nagai, S. (1990). Kinetics of the methanogenic fermentation of acetate. Applied Environmental and Microbiology 56, 3158–3163.

Gómez-Guerrero, A.V., Valdez-Vazquez, I., Caballero-Caballero, M., Chiñas-Castillo, F., Alavéz-Ramírez, R., and Montes-Bernabé, J.L. (2019). Co-digestion of agave angustifolia haw bagasse and vinasses for biogas production from mezcal industry. Revista Mexicana de Ingeniería Química 18, 1073–1083.

González-Blanco, G., Pérez-Pérez, V., Orozco-Villafuerte, J., Aguirre-Garrido, J.F., Beristain-Cardoso, R., and Buendía-González, L. (2020). Kinetics and microbial structure of nitrogen cycle bacteria contained in the rhizosphere of natural wetland polluted with chromium. Revista Mexicana de Ingeniería Química 19, 543–553.

Guerrero, L., Omil, F., Mendez, R., and Lema, J.M. (1999). Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Research 33, 3281–3290.

Gunnigle, E., Siggins, A., Botting, C. H., Fuszard, M., O'Flaherty, V., and Abram, F. (2015). Low-temperature anaerobic digestion is associated with differential methanogenic protein expression. FEMS Microbiology Letters 362, 1–7.

Işık, M., and Sponza, D. T. (2005). Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresource Technology 96, 633–643.

Khan, M.D., Khan, N., Nizami, A.S., Rehan, M., Sabir, S., and Khan, M.Z. (2017). Effect of co-substrates on biogas production and anaerobic decomposition of pentachlorophenol. Bioresource Technology 238, 492–501.

Krause, L., Diaz, N.N., Edwards, R.A., Gartemann, K.H., Krömeke, H., Neuweger, H., et al. (2008). Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. Journal of Biotechnology 136, 91–101.

Lin, Q., He, G., Rui, J., Fang, X., Tao, Y., Li, J., and Li, X. (2016). Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microbial Cell Factories 15, 96.

Okada, D.Y., Esteves, A.S., Delforno, T.P., Hirasawa, J.S., Duarte, I.C.S., and Varesche, M. B.A. (2013). Influence of co-substrates in the anaerobic degradation of an anionic surfactant. Brazilian Journal of Chemical Engineering 30, 499–506.

Polizzi, C., Alatriste-Mondragón, F., and Munz, G. (2018). The role of organic load and ammonia inhibition in anaerobic digestion of tannery fleshing. Water Resources and Industry 19, 25–34.

Rajagopal, R., Massé, D. I., and Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology 143, 632–641.

Ren, Z., Chen, Z., Hou, L. A., Wang, W., Xiong, K., Xiao, X., and Zhang, W. (2012). Design investigation of a solar energy heating system for anaerobic sewage treatment. Energy Procedia 14, 255–259.

Rivas-García, P., Botello-Álvarez, J.E., Miramontes-Martínez, L.R., Cano-Gómez, J.J., and Rico-Martínez, R. (2020). New model of hydrolysis in the anaerobic co-digestion of bovine manure with vegetable waste: modification of anaerobic digestion model. Revista Mexicana de Ingeniería Química 19, 109–122.

Romero-Flores, M., Sillas-Moreno, M.V., Trejo, E., and Montesinos-Castellanos, A. (2019). Modelling of continuous production of biogas in a tubular reactor. Revista Mexicana de Ingeniería Química 18, 803–812.

Sanchez, E., Borja, R., Weiland, P., Travieso, L., and Martın, A. (2001). Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochemistry 37, 483–489.

Terreros-Mecalco, J., Olmos-Dichara, A., Noyola-Robles, A., Ramírez-Vives, F., and Monroy-Hermosillo, O. (2009). Digestión anaerobia de lodo primario y secundario en dos reactores UASB en serie. Revista Mexicana de Ingeniería Química 8, 153–16.

Van Lier, J. B. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science and Technology 57, 1137–1148.

How to Cite
Gómez-Paredes, M., Hernández-Rodríguez, I., López-Ortega, J., González-Blanco, G., & Beristain-Cardoso, R. (2020). Industrial wastewater treatment by anaerobic digestion using a solar heater as renewable energy for temperature-control. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 9-16.
Environmental Engineering