Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: Optimization, kinetics, isotherms and desorption

  • B.M. Salazar-Pinto
  • V. Zea-Linares
  • J.A. Villanueva-Salas
  • E.G. Gonzales-Condori
Keywords: Phaseolus vulgaris L. residues, Biosorption, response surface methodology, Cd (II) and Pb (II) desorption

Abstract

Industrial activities are the most common cause of water contamination by heavy metals, which endanger the quality of water resources and human health, due to their bioaccumulation capacity and consequent biomagnification. For this reason, the removal of metals from effluents before their discharge into the receiving water bodies is of crucial importance. This is why, in the present investigation, the biosorption processes of Cd (II) and Pb (II) in Phaseolus vulgaris L. (bean) agricultural residues (stems, leaves and leaf sheaths) were optimized. The influence of pH, biosorbent doses and initial concentration levels of metallic ions was evaluated using the response surface methodology (RSM). Quadratic models were developed for the percent removal of Cd (II) and Pb (II). Optimal biosorption conditions were attained at pH = 4.3, a 7.4 g/L biosorbent dose and an initial 9.14 mg/L concentration of each metal, achieving percent removals of 87.70 and 95.58% for Cd (II) and Pb (II), respectively. The FT-IR characterization showed that the functional groups involved in adsorption would be in the range of 2300 to 2400 cm-1. The biosorption kinetics were described by the pseudo first order model and the equilibrium data was adjusted to the Freundlich isotherm. An approximate desorption of 98% of Cd (II) and Pb (II) was achieved. The Phaseolus vulgaris L. residue showed a great biosorption capacity of Cd (II) and Pb (II) simultaneously.

References

Akar, S. T., Özcan, A. S., Akar, T., Özcan, A., and Kaynak, Z. (2009). Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination 249(2), 757-761. https://doi.org/10.1016/j.desal.2008.09.012

Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., and Akar, S. T. (2009). Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: Biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials 163(2), 1134-1141. https://doi.org/10.1016/j.jhazmat.2008.07.084

Akpomie, K. G., and Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-00995-x

Al-Ghouti, M. A., and Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

Azadani, E. N. (2019). Lead Exposure and Caries in Children. En Jerome Nriagu (Ed.), Encyclopedia of Environmental Health (Second Edition) (pp. 47-55). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11726-9

Bellinger, D. C. (2018). Tetraethyl Lead, Paints, Pipes, and Other Lead Exposure Routes: The Impact on Human Health. En D. A. Dellasala and M. I. Goldstein (Eds.), Encyclopedia of the Anthropocene (pp. 169-175). Elsevier. https://doi.org/10.1016/B978-0-12-809665-9.09983-3

Bhatnagar, A., and Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chemical Engineering Journal 157(2), 277-296. https://doi.org/10.1016/j.cej.2010.01.007

Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Dotto, G. L., and Duran-Valle, C. J. (2019). Adsorption in Water Treatment. En Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.14390-2

Carrington, CD., and Bolger, P. M. (2014). Toxic Metals: Lead. En Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 349-351). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00203-1

Cataldi, M., Vigliotti, C., Sblendorio, V., and Ferrara, C. (2017). Cadmium☆. En Reference Module in Biomedical Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.99380-2

Chatterjee, A., and Schiewer, S. (2011). Biosorption of Cadmium(II) Ions by Citrus Peels in a Packed Bed Column: Effect of Process Parameters and Comparison of Different Breakthrough Curve Models. CLEAN – Soil, Air, Water 39(9), 874-881. https://doi.org/10.1002/clen.201000482

Chojnacka, K., and Mikulewicz, M. (2014). Bioaccumulation. En P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 456-460). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.01039-3

Ding, Y., Jing, D., Gong, H., Zhou, L., and Yang, X. (2012). Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technology 114, 20-25. https://doi.org/10.1016/j.biortech.2012.01.110

Drouillard, K. G. (2008). Biomagnification. En B. Fath (Ed.), Encyclopedia of Ecology (Second Edition) (pp. 353-358). Elsevier. https://doi.org/10.1016/B978-0-444-63768-0.00377-2

El-Sayed, H. E. M., and El-Sayed, M. M. H. (2014). Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: A review. BioMed Research International, 2014, 146769. https://doi.org/10.1155/2014/146769

El-Sayed, M. E. A. (2020). Nanoadsorbents for water and wastewater remediation. Science of The Total Environment 139903. https://doi.org/10.1016/j.scitotenv.2020.139903

Gad, S. C. (2014). Cadmium. En P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 613-616). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.00823-X

Garba, Z. N., Bello, I., Galadima, A., and Lawal, A. Y. (2016). Optimization of adsorption conditions using central composite design for the removal of copper (II) and lead (II) by defatted papaya seed. Karbala International Journal of Modern Science 2(1), 20-28. https://doi.org/10.1016/j.kijoms.2015.12.002

Garg, U., Kaur, M. P., Jawa, G. K., Sud, D., and Garg, V. K. (2008). Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. Journal of Hazardous Materials 154(1), 1149-1157. https://doi.org/10.1016/j.jhazmat.2007.11.040

Gottipati, R., and Mishra, S. (2010). Process optimization of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design. Chemical Engineering Journal 160(1), 99-107. https://doi.org/10.1016/j.cej.2010.03.015

Gupta, V. K., and Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180, 81-90. https://doi.org/10.1016/j.cej.2011.11.006

Häder, D.-P., Banaszak, A. T., Villafañe, V. E., Narvarte, M. A., González, R. A., and Helbling, E. W. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of The Total Environment, 713, 136586. https://doi.org/10.1016/j.scitotenv.2020.136586

Harikishore Kumar Reddy, D. (2017). Water Pollution Control Technologies. En M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 3-22). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10163-0

Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., and Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management 92(10), 2355-2388. https://doi.org/10.1016/j.jenvman.2011.06.009

Hind, A. R., Bhargava, S. K., and McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR — the tool of choice. Advances in Colloid and Interface Science 93(1), 91-114. https://doi.org/10.1016/S0001-8686(00)00079-8

Karimi, S., Tavakkoli Yaraki, M., and Karri, R. R. (2019). A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renewable and Sustainable Energy Reviews, 107, 535-553. https://doi.org/10.1016/j.rser.2019.03.025

Kumar, P. S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., Murugesan, A., and Sivanesan, S. (2012). Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean Journal of Chemical Engineering 29(6), 756-768. https://doi.org/10.1007/s11814-011-0259-2

Lin, J., and Wang, L. (2009). Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Frontiers of Environmental Science & Engineering in China 3(3), 320-324. https://doi.org/10.1007/s11783-009-0030-7

Lira-Pérez, J., Hidalgo-Lara, M. E., Melendez-Estrada, J., Jesus, B. J. G., and Rodriguéz-Vazquéz, R. (2019). The contribution of H2O2 produced by Aspergillus niger in vat blue dye discoloration: enhancement by a statistical optimization methodology. Revista Mexicana de Ingeniería Química 18(2), 701-714. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Lira

Low, K. S., Lee, C. K., and Liew, S. C. (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry 36(1), 59-64. https://doi.org/10.1016/S0032-9592(00)00177-1

Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., and Poch, J. (2006). Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials 133(1), 203-211. https://doi.org/10.1016/j.jhazmat.2005.10.030

Matsushima, T. (2018). Desorption Kinetics☆. En K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry (pp. 59-63). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.05647-X

Mendez-Armenta, M., and Rios, C. (2011). Cadmium Neurotoxicity. En J. O. Nriagu (Ed.), Encyclopedia of Environmental Health (pp. 474-481). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00381-0

Millward, G. E., Turner, A., and He, X. (2019). Metal Pollution☆. En J. K. Cochran, H. J. Bokuniewicz, and P. L. Yager (Eds.), Encyclopedia of Ocean Sciences (Third Edition) (pp. 342-349). Academic Press. https://doi.org/10.1016/B978-0-12-409548-9.11287-4

Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., and Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management 227, 395-405. https://doi.org/10.1016/j.jenvman.2018.08.069

Mohamed, M. A., Jaafar, J., Ismail, A. F., Othman, M. H. D., and Rahman, M. A. (2017). Chapter 1—Fourier Transform Infrared (FTIR) Spectroscopy. En N. Hilal, A. F. Ismail, T. Matsuura, and D. Oatley-Radcliffe (Eds.), Membrane Characterization (pp. 3-29). Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00001-2

Needleman, H. L., and Bellinger, D. C. (2017). Lead Hazards and Poisoning. En S. R. Quah (Ed.), International Encyclopedia of Public Health (Second Edition) (pp. 377-383). Academic Press. https://doi.org/10.1016/B978-0-12-803678-5.00249-6

Nriagu, J. (2019). Environmental Pollution and Human Health in Ancient Times☆. En Jerome Nriagu (Ed.), Encyclopedia of Environmental Health (Second Edition) (pp. 598-614). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11756-7

Pacheco Tanaka, M. E., Pimentel Frisancho, J. P., and Roque Villanueva, W. F. (2010). Cinética de la bioadsorción de iones cadmio (II) y plomo (II) de soluciones acuosas por biomasa residual de café (Coffea arabica L.). Revista de la Sociedad Química del Perú 76(3), 279-292.

Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science 15(2), 278-286. https://doi.org/10.1016/j.aasci.2017.04.001

Quattrocchi, O., Abelaira, S., and Felipe Laba, R. (1992). Introduccion a la HPLC, Aplicacion y Practica.

Raj, J., Raina, A., and Dogra, T. D. (2013). Direct Determination of Zinc, Cadmium, Lead, Copper Metal in Tap Water of Delhi (India) by Anodic Stripping Voltammetry Technique. E3S Web of Conferences 1, 09009. https://doi.org/10.1051/e3sconf/20130109009

Ramón de los Santos, C., Barajas Fernández, J., Pérez Hernández, G., Hernández Rivera, M. Á., and Díaz Flores, L. L. (2019). Adsorción de cobre (II) y cadmio (II) en suspensiones acuosas de CaCO3 biogénico nanoestructurado. Boletín de la Sociedad Española de Cerámica y Vidrio 58(1), 2-13. https://doi.org/10.1016/j.bsecv.2018.05.003

Rojas-Morales, J. L., Gutiérrez-González, E. C., and Colina-Andrade, G. de J. (2016). Obtención y caracterización de carbón activado obtenido de lodos de plantas de tratamiento de agua residual de una industria avícola. Ingeniería, Investigación y Tecnología 17(4), 453-462. https://doi.org/10.1016/j.riit.2016.11.005

Safa Özcan, A., Tunali, S., Akar, T., and Özcan, A. (2009). Biosorption of lead(II) ions onto waste biomass of Phaseolus vulgaris L.: Estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination 244(1), 188-198. https://doi.org/10.1016/j.desal.2008.05.023

Saikaew, W., Kaewsarn, P., and Saikaew, W. (s. f.). Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions.

Şencan, A., Karaboyacı, M., and Kılıç, M. (2015). Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environmental Science and Pollution Research 22(5), 3238-3248. https://doi.org/10.1007/s11356-014-2974-9

Shakeri, A., Hazeri, Valizadeh, J., Hashemi, E., and Motavalizadeh Kakhky, A. R. (2012). Removal of Lead (II) from Aqueous Solution Using Cocopeat: An Investigation on the Isotherm and Kinetic. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 31(3), 45-50.

Sheppard, N. (2017). IR Spectroscopy, Surface Studies. En J. C. Lindon, G. E. Tranter, and D. W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (pp. 455-462). Academic Press. https://doi.org/10.1016/B978-0-12-803224-4.00335-6

Singh, S., Kumar, V., Datta, S., Dhanjal, D. S., Sharma, K., Samuel, J., and Singh, J. (2020). Current advancement and future prospect of biosorbents for bioremediation. Science of The Total Environment 709, 135895. https://doi.org/10.1016/j.scitotenv.2019.135895

Speight, J. G. (2020). 8—Remediation technologies. En J. G. Speight (Ed.), Natural Water Remediation (pp. 263-303). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-803810-9.00008-5

Srivastava, S., Agrawal, S. B., and Mondal, M. K. (2016). Characterization, isotherm and kinetic study of Phaseolus vulgaris husk as an innovative adsorbent for Cr(VI) removal. Korean Journal of Chemical Engineering 33(2), 567-575. https://doi.org/10.1007/s11814-015-0165-0

Suárez-Vázquez, S. I., Vidales-Contreras, J. A., Márquez-Reyes, J. M., Cruz-López, A., and García-Gómez, C. (2019). Removal of congo red dye using electrocoagulated metal hydroxide in a fixed-bed column: characterization, optimization and modeling studies. Revista Mexicana de Ingeniería Química 18(3), 1133-1142. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/SuarezV

Sud, D., Mahajan, G., and Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology 99(14), 6017-6027. https://doi.org/10.1016/j.biortech.2007.11.064

Surisetty, V. R., Kozinski, J., and Rao Nageswara, L. (2013, julio 29). Biosorption of Lead Ions from Aqueous Solution Using Ficus benghalensis L. [Research Article]. Journal of Engineering; Hindawi. https://doi.org/10.1155/2013/167518

Tarazona, J. V. (2014). Pollution, Water. En P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 1024-1027). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.00532-7

Tejada-Tovar, C., Mancilla, H. B., Moreyra, J. D. P., Villabona-Ortiz, A., and Toro, R. O. (2020). Effect of the adsorbent dose in Pb(II) removal by using sugar cane bagasse: Kinetics and isotherms. Revista Mexicana de Ingeniería Química 19(3), 1413-1423. https://doi.org/10.24275/rmiq/IA1101

Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., and Khosravi, A. (2013). Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. Journal of the Taiwan Institute of Chemical Engineers 44(2), 295-302. https://doi.org/10.1016/j.jtice.2012.11.001

Tunali, S., Ozcan, A., Kaynak, Z., Ozcan, A. S., and Akar, T. (2007). Utilization of the Phaseolus vulgaris L. Waste biomass for decolorization of the textile dye Acid Red 57: Determination of equilibrium, kinetic and thermodynamic parameters. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 42(5), 591-600. https://doi.org/10.1080/10934520701244359

Wilhelm, F. M. (2009). Pollution of Aquatic Ecosystems I. En G. E. Likens (Ed.), Encyclopedia of Inland Waters (pp. 110-119). Academic Press. https://doi.org/10.1016/B978-012370626-3.00222-2

Yu, R., He, L., Cai, R., Li, B., Li, Z., and Yang, K. (2017). Heavy metal pollution and health risk in China. Global Health Journal, 1(1), 47-55. https://doi.org/10.1016/S2414-6447(19)30059-4

Zang, Y. (2016). Cadmium: Toxicology. En B. Caballero, P. M. Finglas, and F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 550-555). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00097-0

Zang, Y., and Bolger, P. M. (2014). Toxic Metals: Cadmium. En Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 346-348). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00202-X

Published
2020-10-14
How to Cite
Salazar-Pinto, B., Zea-Linares, V., Villanueva-Salas, J., & Gonzales-Condori, E. (2020). Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: Optimization, kinetics, isotherms and desorption. Revista Mexicana De Ingeniería Química, 20(1), 305-322. https://doi.org/10.24275/rmiq/IA1864
Section
Environmental Engineering