Isolation of autochthonous microorganisms to formulate a defined inoculum for small-scale cocoa fermentation

  • J.A. Huerta-Conde
  • S. Schorr-Galindo
  • C. Figueroa-Hernández
  • Z.J. Hernández-Estrada
  • M.L. Suárez-Quiroz
  • O. González-Ríos
Keywords: cocoa bean fermentation, yeast, lactic acid bacteria, acetic acid bacteria, microbial successions, small- scale fermentation, defined inoculum

Abstract

In cocoa fermentation exists a wide microbial diversity; the most important microorganisms are yeasts, lactic acid bacteria (LAB), and acetic acid bacteria (AAB). Such diversity can result that fermented cocoa quality is not always the same. The use of microbial consortia can steer the process, allowing the production of fermented cocoa beans with homogeneous quality and safety. For that reason, it was proposed to use indigenous microorganisms to formulate defined inoculums to conduct the small- fermentation of Mexican cocoa. A total of 54 strains were isolated from the spontaneous fermentation of cocoa. These included yeasts (Candida, Rhodotorula, Saccharomyces and Yarrowia), LAB (Lactobacillus and Lactococcus), and AAB (Acetobacter and Gluconobacter). The cocoa fermentations were inoculated with an inoculum composed of lipolytic Yarrowia, Lactococcus lactis, and Acetobacter aceti, only varying the form of inoculation (mixed or microbial succession) and were compared with spontaneous fermentation. It was observed that fermentation conducted by succession inoculation form showed similar behavior to the spontaneous process, obtaining well-fermented cocoa beans with homogeneous quality and safety.

 

References

Adler, P., Bolten, C.J., Dohnt, K., Hansen, C.E. and Wittmann, C. (2013). Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Applied and Environmental Microbiology 79, 5670–81. https://doi.org/10.1128/aem.01483-13.

Adler, P., Frey, L.J., Berger, A., Bolten, C.J., Hansen, C.E. and Wittmann, C. (2014). The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Applied and Environmental Microbiology 80, 4702–4716. https://doi.org/10.1128/aem.01048-14.

Arana-Sánchez, A., Segura-García, L.E., Kirchmayr, M., Orozco-Ávila, I., Lugo-Cervantes, E. and Gschaedler-Mathis, A. (2015). Identification of predominant yeasts associated with artisan Mexican cocoa fermentations using culture-dependent and culture-independent approaches. World Journal of Microbiology and Biotechnology 31, 359–369. https://doi.org/10.1007/s11274-014-1788-8.

Ardhana, M.M. and Fleet, G.H. (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology 86, 87–99. https://doi.org/10.1016/S0168-1605(03)00081-3.

Association of Official Analytical Chemist, (1996). Official Methods of Analysis, 16th ed. AOAC International, Washington DC.

Batista, N.N., Ramos, C.L., Ribeiro, D.D., Pinheiro, A.C.M. and Schwan, R.F. (2015). Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT - Food Science and Technology 63, 221–227. https://doi.org/10.1016/j.lwt.2015.03.051.

Bortolini, C., Patrone, V., Puglisi, E. and Morelli, L. (2016). Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions. International Journal of Food Microbiology 236, 98–106. https://doi.org/10.1016/j.ijfoodmicro.2016.07.004.

Bosma, E. F., Forster, J. and Nielsen, A. T. (2017). Lactobacilli and pediococci as versatile cell factories – Evaluation of strain properties and genetic tools. Biotechnology Advances 35(4), 419–442. https://doi.org/10.1016/j.biotechadv.2017.04.002.

Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J.C., Gerds, M.L., Hammes, W.P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I.B., Prajapati, J.B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S. and Hansen, E.B. (2012). Food fermentations: microorganisms with technological beneficial use. International Journal of Food Microbiology 154, 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030.

Camiolo, S., Porru, C., Benítez-Cabello, A., Rodríguez-Gómez, F., Calero-Delgado, B., Porceddu, A., Budroni, M., Mannazzu, I., Jiménez-Díaz, R. and Arroyo-López, F. N. (2017). Genome overview of eight Candida boidinii strains isolated from human activities and wild environments. Standards in Genomic Sciences 12(1), 70. https://doi.org/10.1186/s40793-017-0281-z.

Camu, N., De Winter, T., Addo, S.K., Takrama, J.S., Bernaert, H. and De Vuyst, L. (2008a). Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. Journal of the Science of Food and Agriculture 88, 2288–2297. https://doi.org/10.1002/jsfa.3349.

Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J.S., Vancanneyt, M. and De Vuyst, L. (2007). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology 73, 1809–24. https://doi.org/10.1128/aem.02189-06.

Camu, N., González, A., De Winter, T., Van Schoor, A., De Bruyne, K., Vandamme, P., Takrama, J.S., Addo, S.K. and De Vuyst, L. (2008b). Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Applied and Environmental Microbiology 74, 86–98. https://doi.org/10.1128/aem.01512-07.

Cocolin, L., Gobbetti, M., Neviani, E. and Daffonchio, D. (2016). Ensuring safety in artisanal food microbiology. Nature Microbiology 1, 16171. https://doi.org/10.1038/nmicrobiol.2016.171.

Copetti, M. V., Iamanaka, B.T., Pereira, J.L., Fungaro, M.H. and Taniwaki, M.H. (2011). Aflatoxigenic fungi and aflatoxin in cocoa. International Journal of Food Microbiology 148, 141–144. https://doi.org/10.1016/j.ijfoodmicro.2011.05.020.

Copetti, M. V., Pereira, J.L., Iamanaka, B.T., Pitt, J.I. and Taniwaki, M.H. (2010). Ochratoxigenic fungi and ochratoxin A in cocoa during farm processing. International Journal of Food Microbiology 143, 67–70. https://doi.org/10.1016/j.ijfoodmicro.2010.07.031.

Crafack, M., Mikkelsen, M.B., Saerens, S., Knudsen, M., Blennow, A., Lowor, S., Takrama, J., Swiegers, J.H., Petersen, G.B., Heimdal, H. and Nielsen, D.S. (2013). Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. International Journal of Food Microbiology 167, 103–116. https://doi.org/10.1016/j.ijfoodmicro.2013.06.024.

Da Veiga Moreira, I.M., Miguel, M.G. da C.P., Duarte, W.F., Dias, D.R. and Schwan, R.F. (2013). Microbial succession and the dynamics of metabolites and sugars during the fermentation of three different cocoa (Theobroma cacao L.) hybrids. Food Research International 54, 9–17. https://doi.org/10.1016/j.foodres.2013.06.001.

Daniel, H.-M., Vrancken, G., Takrama, J.F., Camu, N., De Vos, P. and De Vuyst, L. (2009). Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Research 9, 774–783. https://doi.org/10.1111/j.1567-1364.2009.00520.x.

De Almeida, S. de F. O., Silva, L. R. C., Junior, G. C. A. C., Oliveira, G., da Silva, S. H. M., Vasconcelos, S. and Lopes, A. S. (2019). Diversity of yeasts during fermentation of cocoa from two sites in the Brazilian amazon. Acta Amazonica, 49(1), 64–70. https://doi.org/10.1590/1809-4392201703712.

De Vuyst, L. and Weckx, S., (2016). The cocoa bean fermentation process: from ecosystem analysis to starter culture development. Journal of Applied Microbiology 121, 5–17. https://doi.org/10.1111/jam.13045.

Dirección general de Normas, 1980. NMX-F-352-S-1980. Cacao en grano fermentado.

Fang, F., Xu, J., Li, Q., Xia, X. and Du, G. (2018). Characterization of a Lactobacillus brevis strain with potential oral probiotic properties. BMC Microbiology, 18(1), 221. https://doi.org/10.1186/s12866-018-1369-3.

Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z.J., González-Ríos, O., Cocolin, L. and Suárez-Quiroz, M.L. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology 301, 41-50 https://doi.org/10.1016/j.ijfoodmicro.2019.05.002.

Garcia-Armisen, T., Papalexandratou, Z., Hendryckx, H., Camu, N., Vrancken, G., De Vuyst, L. and Cornelis, P. (2010). Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16S rRNA gene clone library. Applied Microbiology and Biotechnology 87, 2281–2292. https://doi.org/10.1007/s00253-010-2698-9.

Gilmour, M. and Lindblom, M. (2008). Management of ochratoxin A in the cocoa supply chain: a summary of work by the CAOBISCO/ECA/FCC working group on ochratoxin A., in: Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade. CABI, Wallingford, pp. 231–243. https://doi.org/10.1079/9781845930820.0231.

González-Olivares, L.G., Jiménez-Guzmán, J., Cruz-Guerrero, A., Rodríguez-Serrano, G., Gómez-Ruiz, L. and García-Garibay, M. (2011). Liberación de péptidos bioactivos por bacterias lácticas en leches fermentadas comerciales. Revista Mexicana de Ingeniería Química 10, 179–188.

Gutiérrez, T.J. (2017). State-of-the-Art Chocolate Manufacture: A Review. Comprensive Reviews in Food Science and Food Safety 16, 1313-1344.https://doi.org/10.1111/1541-4337.12301

Hernández-Hernández, C., López-Andrade, P.A., Ramírez-Guillermo, M.A., Guerra Ramírez, D. and Caballero Pérez, J.F. (2016). Evaluation of different fermentation processes for use by small cocoa growers in Mexico. Food Science & Nutrition 4, 690–695. https://doi.org/10.1002/fsn3.333.

Ho, V.T.T., Zhao, J. and Fleet, G. (2015). The effect of lactic acid bacteria on cocoa bean fermentation. International Journal of Food Microbiology 205, 54–67. https://doi.org/10.1016/j.ijfoodmicro.2015.03.031.

Ho, V.T.T., Zhao, J. and Fleet, G. (2014). Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology 174, 72–87. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014.

Hopple, J.S. and Vilgalys, R., (1994). Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86, 96-107. https://doi.org/10.2307/3760723.

Iñiguez-Muñoz, L.E., Arellano-Plaza, M., Prado-Montes De Oca, E., Kirchmayr, M.R., Segura-García, L.E., Amaya-Delgado, L. and Gschaedler Mathis, A. (2019). The production of esters and gene expression by Saccharomyces cerevisiae during fermentation on agave tequilana juice in continuous cultures. Revista Mexicana de Ingeniería Química 18, 451–462.

Illeghems, K., De Vuyst, L., Papalexandratou, Z. and Weckx, S. (2012). Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS ONE, 7(5), 1–11. https://doi.org/10.1371/journal.pone.0038040.

Jespersen, L., Nielsen, D., Honholt, S. and Jakobsen, M. (2005). Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Research 5, 441–453. https://doi.org/10.1016/j.femsyr.2004.11.002.

Kostinek, M., Ban-Koffi, L., Ottah-Atikpo, M., Teniola, D., Schillinger, U., Holzapfel, W. H. and Franz, C.M.A.P. (2008). Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria. Current Microbiology 56(4), 306–314. https://doi.org/10.1007/s00284-008-9097-9.

Krings, U. and Berger, R. G. (1998). Biotechnological production of flavours and fragrances. Applied Microbiology and Biotechnology 49(1), 1–8. https://doi.org/10.1007/s002530051129.

Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. and Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82, 6955–6959. https://doi.org/10.1073/pnas.82.20.6955

Lagunes- Gálvez, S., Loiseau, G., Paredes, J.L., Barel, M. and Guiraud, J.P. (2007). Study on the microflora and biochemistry of cocoa fermentation in the Dominican Republic. International Journal of Food Microbiology 114, 124–130. https://doi.org/10.1016/j.ijfoodmicro.2006.10.041

Lee, L.W., Tay, G.Y., Cheong, M.W., Curran, P., Yu, B. and Liu, S.Q. (2017a). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee. LWT - Food Science and Technology 77, 225–232. https://doi.org/10.1016/j.lwt.2016.11.047.

Lee, L.W., Tay, G.Y., Cheong, M.W., Curran, P., Yu, B. and Liu, S.Q. (2017b). Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: II. Roasted coffee. LWT - Food Science and Technology 80, 32–42. https://doi.org/10.1016/j.lwt.2017.01.070.

Lefeber, T., Papalexandratou, Z., Gobert, W., Camu, N. and De Vuyst, L. (2012). On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiology 30, 379–392. https://doi.org/10.1016/j.fm.2011.12.021.

Meersman, E., Steensels, J., Mathawan, M., Wittocx, P.J., Saels, V., Struyf, N., Bernaert, H., Vrancken, G. and Verstrepen, K.J. (2013). Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 8, 1–10. https://doi.org/10.1371/journal.pone.0081559.

Mendoza-Avendaño, C., Meza-Gordillo, R., Ovando-Chacón, S.L., Luján-Hidalgo, M.C., Ruiz-Cabrera, M.A., Grajales-Lagunes, A., Ruiz-Valdiviezo, V.M., Gutiérrez-Miceli, F.A. and Abud-Archila, M. (2019). Evaluation of bioactive and anti-nutritional compounds during soymilk fermentation with Lactobacillus plantarum BAL-03-ITTG and Lactobacillus fermentum BAL-21-ITTG. Revista Mexicana de Ingeniería Química 18, 967–978. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/ 2019v18n3/mend
oza

Melgar-Lalanne, G., Ley-Martínez, J., Azuara-Nieto, E., Téllez-Medina, D. I., Meza, T., González-González, C.R. and Gutiérrez-López, G.F. (2019). Insight over Lactobacillus plantarum 299v physicohemical characteristics of aggregation kinetics under starvation and different pH conditions. Revista Mexicana de Ingeniería Química 18(1), 151–164. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/melgar

Menezes, A.G., Batista, N.N., Ramos, C.L., de Andrade e Silva, A.R., Efraim, P., Pinheiro, A.C.M. and Schwan, R.F. (2016). Investigation of chocolate produced from four different Brazilian varieties of cocoa (Theobroma cacao L.) inoculated with Saccharomyces cerevisiae. Food Research International 81, 83–90. https://doi.org/10.1016/j.foodres.2015.12.036.

Moens, F., Lefeber, T. and De Vuyst, L. (2014). Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Applied and Environmental Microbiology 80, 1848–57. https://doi.org/10.1128/aem.03344-13.

Mota-Gutierrez, J., Botta, C., Ferrocino, I., Giordano, M., Bertolino, M., Dolci, P., Cannoni, M. and Cocolin, L. (2018). Dynamics and biodiversity of bacterial and yeast communities during fermentation of cocoa beans. Applied and Environmental Microbiology 84, e01164-18. https://doi.org/10.1128/aem.01164-18

Mota‐Gutierrez, J., Barbosa‐Pereira, L., Ferrocino, I. and Cocolin, L. (2019). Traceability of functional volatile compounds generated on inoculated cocoa fermentation and its potential health benefits. Nutrients 11, 884. https://doi.org/10.3390/nu11040884

Nawaz, A., Ashfaq, A., Zaidi, S.M.A.M., Munir, M., Haq, I.U., Mukhtar, H. and Tahir, S.F. (2020). Comparison of fermentation and medical potentials of Saccharomyces with Wickerhamomyces genera. Revista Mexicana de Ingeniería Química 19, 33–47. https://doi.org/10.24275/rmiq/bio379.

Nielsen, D. S., Hønholt, S., Tano-Debrah, K. and Jespersen, L. (2005). Yeast populations associated with Ghanaian cocoa fermentations analysed using denaturing gradient gel electrophoresis (DGGE). Yeast 22(4), 271–284. https://doi.org/10.1002/yea.1207.

Nielsen, D. S., Teniola, O. D., Ban-Koffi, L., Owusu, M., Andersson, T. S. and Holzapfel, W. H. (2007). The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. International Journal of Food Microbiology 114(2), 168–186. https://doi.org/10.1016/j.ijfoodmicro.2006.09.010.

Osborne, J.P. (2010). Advances in microbiological quality control. In Managing Wine Quality: Viticulture and Wine Quality Volume 1, (Reynolds, A.G. eds), Pp. 162–188. Woodhead Publishing and CRC Press LLC, Boca Raton. https://doi.org/10.1533/9781845699284.2.162.

Ozturk, G. and Young, G.M. (2017). Food evolution: the impact of society and science on the fermentation of cocoa beans. Comprensive Reviews in Food Science and Food Safety 16, 431–455. https://doi.org/10.1111/1541-4337.12264.

Papalexandratou, Z., Camu, N., Falony, G. and De Vuyst, L. (2011a). Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiology 28, 964–973. https://doi.org/10.1016/j.fm.2011.01.010.

Papalexandratou, Z., Falony, G., Romanens, E., Jimenez, J.C., Amores, F., Daniel, H.M. and De Vuyst, L. (2011b). Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Applied and Environmental Microbiology 77, 7698–7714. https://doi.org/10.1128/aem.05523-11.

Papalexandratou, Z. and Vuyst, L. (2011c). Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Research 11, 564–574. https://doi.org/10.1111/j.1567-1364.2011.00747.x.

Papalexandratou, Z., Lefeber, T., Bahrim, B., Lee, O.S., Daniel, H.M. and De Vuyst, L. (2013). Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa. Food Microbiology 35, 73–85. https://doi.org/10.1016/j.fm.2013.02.015.

Papalexandratou, Z., Kaasik, K., Kauffmann, L.V., Skorstengaard, A., Bouillon, G., Espensen, J.L., Hansen, L.H., Jakobsen, R.R., Blennow, A., Krych, L., Castro-Mejía, J.L. and Nielsen, D.S. (2019). Linking cocoa varietals and microbial diversity of Nicaraguan fine cocoa bean fermentations and their impact on final cocoa quality appreciation. International Journal of Food Microbiology 304, 106–118. https://doi.org/10.1016/j.ijfoodmicro.2019.05.012.

Passos, F.M.L., Silva, D.O., Lopez, A., Ferreira, Célia, L.L.F. and Guimaräes, W.V. (1984). Characterization and distribution of lactic acid bacteria from traditional cocoa bean fermentations in Bahia. Journal of Food Science 49, 205–208. https://doi.org/10.1111/j.1365-2621.1984.tb13708.x.

Patrignani, F., Iucci, L., Vallicelli, M., Guerzoni, M.E., Gardini, F. and Lanciotti, R. (2007). Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Science 75, 676–686. https://doi.org/10.1016/j.meatsci.2006.09.017.

Pereira, G., Magalhães, K. T., de Almeida, E. G., da Silva Coelho, I. and Schwan, R. F. (2013). Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: Influence on the dynamics of microbial populations and physical–chemical properties. International Journal of Food Microbiology 161, 121–133. https://doi.org/10.1016/j.ijfoodmicro.2012.11.018.

Pereira, G.V. de M., Miguel, M.G. da C.P., Ramos, C.L. and Schwan, R.F. (2012). Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Applied and Environmental Microbiology 78, 5395–405. https://doi.org/10.1128/aem.01144-12

Pereira, G.V. de M., Soccol, V.T. and Soccol, C.R. (2016). Current state of research on cocoa and coffee fermentations. Current Opinion in Food Science 7, 50–57. https://doi.org/10.1016/j.cofs.2015.11.001.

Ramirez, M.A.J.R. (2016). Characterization and Safety Evaluation of Exopolysaccharide Produced by Rhodotorula minuta BIOTECH 2178. International Journal of Food Engineering 2, 31–35. https://doi.org/10.18178/ijfe.2.1.31-35.

Reyes, I., Hernández-Jaimes, C., Meraz, M. and Rodríguez-Huezo, M.E. (2018). Physicochemical changes of corn starch during lactic acid fermentation with Lactobacillus bulgaricus. Revista Mexicana de Ingeniería Química 17, 279–288. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/reyes.

Sandhya, M.V.S., Yallappa, B.S., Varadaraj, M.C., Puranaik, J., Rao, L.J., Janardhan, P. and Murthy, P.S. (2016). Inoculum of the starter consortia and interactive metabolic process in enhancing quality of cocoa bean (Theobroma cacao) fermentation. LWT - Food Science and Technology 65, 731–738. https://doi.org/10.1016/J.LWT.2015.09.002.

Santana, N. B., Teixeira Dias, J. C., Rezende, R. P., Franco, M., Silva Oliveira, L. K. and Souza, L. O. (2018). Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE 13(4), e0195206. https://doi.org/10.1371/journal.pone.0195206.

Saunshi, Y.B., Sandhya, M.V.S., Rastogi, N.K. and Murthy, P.S. (2019). Starter consortia for on-farm cocoa fermentation and their quality attributes. Preparative Biochemistry & Biotechnology, 1-9. https://doi.org/10.1080/10826068.2019.1689508.

Saunshia, Y., Sandhya, M.K.V.S., Lingamallu, J.M.R., Padela, J. and Murthy, P. (2018). Improved fermentation of cocoa beans with enhanced aroma profiles. Food Biotechnology 32, 257–272. https://doi.org/10.1080/08905436.2018.1519444

Schwan, R., (1998). Cocoa fermentations conducted with a defined microbial cocktail inoculum. Applied Environmental Microbiology 64, 1477–1483.

Schwan, R., and Wheals, A.E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition 44, 205–221. https://doi.org/10.1080/10408690490464104.

Schwan, R.F., Fleet, G.H. and Fleet, G.H. (2015). Microbial activities during cocoa fermentation. In Cocoa and Coffee Fermentation, (Schwan, R.F., Fleet, Graham, H, eds.), Pp. 148–211. CRC Press, Boca Raton. https://doi.org/10.1201/B17536-9.

Song, A.A.L., In, L.L.A., Lim, S. H. E. and Rahim, R. A. (2017). A review on Lactococcus lactis: From food to factory. Microbial Cell Factories 16. https://doi.org/10.1186/s12934-017-0669-x.

Wang, C., Sun, J., Lassabliere, B., Yu, B. and Liu, S.Q. (2020). Coffee flavour modification through controlled fermentation of green coffee beans by Lactococcus lactis subsp. cremoris. LWT 120, 108930. https://doi.org/10.1016/j.lwt.2019.108930.
Published
2020-09-15
How to Cite
Huerta-Conde, J., Schorr-Galindo, S., Figueroa-Hernández, C., Hernández-Estrada, Z., Suárez-Quiroz, M., & González-Ríos, O. (2020). Isolation of autochthonous microorganisms to formulate a defined inoculum for small-scale cocoa fermentation. Revista Mexicana De Ingeniería Química, 20(1), 239-256. https://doi.org/10.24275/rmiq/Bio1869
Section
Biotechnology

Most read articles by the same author(s)