Integral valorization from industrial Persian lime processing wastes (Citrus latifolia Tanaka): simultaneous recovery of oils and antioxidants

  • D.L. Ambriz-Pérez
  • I.Y. Palomares-Ruíz
  • F.J. Gómez-Córdoba
  • N.Y. Mejias-Brizuela
  • N. Araiza-Lizarde
  • D.U. Santos-Ballardo http://orcid.org/0000-0001-5058-8621
Keywords: persian lime, oil extraction, valorisation, phenolic compounds, antioxidant activity

Abstract

Mexico´s Persian lime production in 2019 was close to 1.3 million of tons, inferring an approximately 390,000 tons of peel residues during its processing. This residues presents an interesting opportunity for obtaining value-added products, mainly due to its composition, formed principally by water, soluble sugars, fiber, organic acids, fatty acids, minerals, essential oils, flavonoids, and vitamins. Despite this, the valorisation of this residual biomass has been almost completely ignored. In this paper, the residual peel was analyzed in order to determine its biotechnological potential, for this, different oil extraction methods were compared, the fatty acids profile was determined, also characterization and the antioxidant potential of the defatted residues were evaluated. The results showed that the principal fatty acids present in the oil extracted were Palmitic, Oleic and Linoleic, which allows its use for food and bioenergy purposes, moreover, the defatted residual biomass characterization presents a chemical composition which allows the use for as livestock, biogas production or agronomy. To our knowledge, this is the first report of antioxidant activity from defatted Persian lime residual biomass, wherein, the residues generated by steam distillation showed the bigger amount of phenolic compounds, but the obtained from hexane extraction presents a higher antioxidant activity.

References

American Public Health Association (APHA) & Franson, M., Ann, H. & American Water Works Association & Water Pollution Control Federation (1999). Standard methods for the examination of water and wastewater (20th ed). American Public Health Association, Washington, D.C
Badillo, M.D. (2011). Estudio comparativo del potencial nutritivo del limón persa (Citrus latifolia tanaka) Deshidratado de bandejas y en microondas. Escuela superior politécnica de Chimborazo. pp 70-80.
Abeysinghe, D. C., Li, X., Sun, C., Zhang, W., Zhou, C., & Chen, K. (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry 104, 1338-1344.
Ali, M., & Watson, I. A. (2013). Comparison of oil extraction methods, energy analysis and biodiesel production from flax seeds. International Journal of Energy Research 38(5), 614-625.
Ambriz-Pérez, D., Ramos-Payan, R., Angulo-Escalante, M., Leon-Felix, J., Delgado-Vargas, F., Heredia, J. (2017). Antioxidant capacity and protective role of methanolic extracts of Jatropha platyphylla against oxidative stress on macrophage cells. International Journal of Pharma and Bio Science 8(1):245-253.
Amzad, H., M., & Dawood, S. M. (2015). A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arabian Journal of Chemistry 8(1):66-71.
Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants (Basel) 8(4):96.
Ben Hsouna, A., Ben Halima, N., Smaoui, S., Hamdi, N. (2017). Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease 16:146.
Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–7.
Costa, R., Albergamo, A., Arrigo, S., Gentile, F., & Dugo, G. (2019). Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a waste product from citrus industry. Journal of Chromatography A. doi:10.1016/j.chroma.2019.06.049
Dalm, J.A., Hogervost, P. (2011). Guía OIML G-24 Medición de densidad. Bureau International de Métrologie Légale. París, Francia. pp: 1-34.
Dugo, P., Mondello, L., Dugo, L., Stancanelli, R., & Dugo, G. (2000). LC-MS for the identification of oxygen heterocyclic compounds in citrus essential oils. Journal of Pharmaceutical and Biomedical Analysis 24(1):147–54.
Egbuonu, A.C.C., Osuji, C.A. (2016). Proximate Compositions and Antibacterial Activity of Citrus sinensis (Sweet Orange) Peel and Seed Extracts. European Journal of Medicinal Plants 12(3): 1-7.
EPA (1999) Total organic carbon in water. Method 415.1. United States Environmental Protection Agency, SW-846 Manual. Washington, DC: Government Printing Office, 1–3.
Fakayode, O.A., & Abobi, K.E. (2018). Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: a response surface approach. Journal of Analytical Science and Technology 9:20. https://doi.org/10.1186/s40543-018-0151-3.
Fazal, M.A., Haseeb, A.S.M.A., & Masjuki, M.M. (2011). Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renewable & Sustainable Energy Reviews 15(2):1314-1324.
Fernández Lambert, G., Aguilar-Lasserre, A., Azzaro-Pantel, C., Miranda-Ackerman, M. A., Purroy Vázquez, R., & del Rosario Pérez Salazar, M. (2015). Behavior patterns related to the agricultural practices in the production of Persian lime (Citrus latifolia tanaka) in the seasonal orchard. Computers and Electronics in Agriculture 116,162–172.
Folin, C., & Ciocalteau, V. (1927). Tyrosine and tryptophan determination in proteins. Journal of Biological Chemistry 73, 627- 650.
Food and Agriculture Organization of the United Nations (FAO): Global Food Losses and Food Waste. Dusseldorf, Germany (2011). Interpack 2011.
Gök, A., İsmail Kirbaşlar, Ş., & Gülay Kirbaşlar, F. (2014). Comparison of lemon oil composition after using different extraction methods. Journal of Essential Oil Research 27(1):17–22.
Gobato, R., Gobato, A., & Fedrigo, D.F.G. (2015). Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus latifolia Var Tahiti). Parana Journal of Science and Education 1(1): 1-10.
Golkamani, M.T., & Moayyedi, M. (2016). Comparison of microwave-assisted hydrodistillation and solvent-less microwave extraction of essential oil from dry and fresh Citrus limon (Eureka variety) peel. Journal of Essential Oil Research doi: 10.1080/10412905.2016.1145606.
Golmohammadi, M., Borghei, A., Zenouzi, A., Ashrafi, N., & Taherzadeh, M.J. (2018). Optimization of essential oil extraction from orange peels using steam explosion. Heliyon 4(11) e00893 doi:10.1016/j.heliyon.2018.e00893.
Goncalves, D., Paludetti, M.F., Concalves, C.B., & Rodrigues, C.E.C. (2018). Extraction of oxygenated compounds from crude citrus latifolia peel oil using ethanol/water mixtures as solvents: Phase equilibrium and continuous equipment operation. Separation and Purification Technology 199: 271-281.
Goulas, V., & Manganaris, G.A. (2012). Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry 131,39-47.
Gutiérrez-Grijalva, E.P., Ambriz-Pérez, D.L., Leyva-López, N., Castillo-López, R.I., & Heredia, J.B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutrición 66(2). Available in: http://www.alanrevista.org/ediciones/2016/2/art-1/.
Iglesias-Jiménez, E., & Pérez-García, V. (1992) Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresource Technology 41(3): 265-272.
Jiménez-Nempeque, L.V., Gómez-Cabrera, Á.P., & Colina-Moncayo, J.Y. (2020). Evaluation of Tahiti lemon shell flour (Citrus latifolia Tanaka) as a fat mimetic. Journal of Food Science and Technology doi:10.1007/s13197-020-04588-y.
Juhaimi, F.A., Uslu, N., Badiker, E.E., Ghafoor, K., Mohamed-Ahmed, I.A., & Özcan, M.M. (2019). The Effect of Different Solvent Types and Extraction Methods on Oil Yields and Fatty Acid Composition of Safflower Seed. Journal of Oleo Science 68(11):1099-1104. doi:10.5650/jos.ess19131
Kaur, N., Chugh, V., & Gupta, A.K. (2014). Essential fatty acids as functional components as foods –a review. Journal of Food Science and Technology 51(10):2289–2303.
Kelm, G.R., & Wickett, R.R. (2017). The Role of Fatty Acids in Cosmetic Technology. Fatty Acids 385–404. doi:10.1016/b978-0-12-809521-8.00012-x
Kent-Hoekman, S., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties and specifications. Renewable & Sustainable Energy Reviews 16: 143-169.
Leung, D.Y.C., Wang, J. (2016). An overview on biogas generation from anaerobic digestion of food waste. International Journal of Green Energy 13:119–131.
Londoño, J., Sierra, J., Álvarez, R., Restrepo, A.M., Passaro, C. (2012) Aprovechamiento de los subproductos citrícolas. In: Garcés LF, Pássaro C. Cítricos: cultivo, postcosecha e industrialización, Corporación Universitaria Lasallista, pp 307–342.
Lopresto, C.G., Petrillo, F., Casazza, A.A., Aliakbarian, B., Perego, P., Calabro, V. (2014). A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and putrification technology 24: 13-20.
Matsuo, Y., Miura, L.A., Araki, T., Yoshie-Stark, Y. (2019), Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chemistry 279: 356-363.

M’hiri, N., Ghali, R., Ben Nasr, I., & Boudhrioua, N. (2018). Effect of different drying processes on functional properties of industrial lemon byproduct. Process Safety and Environmental Protection 116: 450–460.
Olerumi, O.I.A., Andrew, I.A., Ngi, J. (2007). Evaluation of the nutritive potential of the peels of some citrus fruit varieties as feedingstuffs in livestock production. Pakistan Journal of Nutrition 6(6): 653-656.
Özcan, M.M., Ghafoor, K.G., Juhaimi, F.A., Uslu, N., Babiker, E.E., Ahmed, I.A.M., Almusallam, I.A. (2020). Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04524-0
Palazzolo, E., Laudicina, V.A., Germanà, M.A. (2013). Current and potential use of citrus essential oils. Current Organic Chemistry. 17:3042–3049.
Rashida, U., Ibrahimc, M., Yasinb, S., Yunusa, R., Taufiq-Yapd, Y.H., Knothee, G. (2013). Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Industrial Crops and Products 45:355– 359
Re, R., Pellegrini, N., Proteggente, A., Pan-Nala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applyng an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26, 9/10, 1231-1237.
Rispail, N., Morris, P., & Webb, K. (2005). Phenolic compounds: extraction and analysis. In: Márquez, A.J. (eds) Lotus Japinicus Hamdbook. pp 349-354.
Rustan, A.C., Devron, C.A. (2005). Fatty Acids: Structures and Properties. Encyclopedia of Life Sciences & 2005, John Wiley & Sons. Pp: 1-7.
Sahasrabudhe, S.N., Rodríguez-Martínez, V., O’Meara, M., Farkas, B.E. (2017). Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: Measurement and modeling. International Journal of Food Properties 20(2):1965-1981.
Santos-Ballardo, D.U., Font-Segura, X., Sánchez-Ferrer, A., Barrena, R., Rossi, S., Valdez-Ortiz, A. (2015). Valorization of biodiesel production wastes: anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol. Waste Management & Research 33:250–257.
Santos-Ballardo, D.U., Rossi, S., Reyes-Moreno, C., Valdez-Ortiz, A. (2016). Microalgae potential as a biogas source: current status, restraints and future trends. Reviews in Environmental Science and Biotechnology 15: 243–264.
Servicio de Información Agroalimentaria y Pesquera (SIAP). (2019). Cierre de la producción agrícola 2019. Available in: https://nube.siap.gob.mx/cierreagricola/ (Accessed July 26th, 2020).
Serrano-Meza, A., Garzón-Zúñiga, M.A., Barragán-Huera, B.E., Estrada-Arriaga, E.B., Almaraz-Abarca, N., García-Olivares, J.G. (2020) Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Revista Mexicana de Ingeniería Química 19(1): 29-44.
Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 34, 29-46.
Sir Elkhatim, K.A., Elagib, R.A.A., & Hassan, A.B. (2018). Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science & Nutrition 6(5):1-6.
Sztern, D., Pravia, M.A. (2011). Manual para la elaboración de compost base conceptuales y procedimientos. Organización Panamericana de la Salud, Organización Mundial de la Salud. Pp: 1-69
TsegayeFekadu, Seifu, T., Abera, A. (2019). Extraction of Essential Oil from Orange Peel using Different Methods and Effect of Solvents, Time, Temperature to Maximize Yield. IJESC 9(12): 24300-24308
United States Department of Agriculture; USDA. (2020). Citrus: World Markets and Trade. Available in: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. (Accessed July 24th, 2020).
Vratislav, C., Bára, V., Luděk, Š., Miroslava, B. (2015). The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry. I. A Review of Kjeldahl Methods Adopted by Laboratory Medicine, Critical Reviews in Analytical Chemistry, 45:2, 106-111.
Zahoor, S., Farooq, A., Tahir, M., Bushra, S., Rahman, Q. (2016). Variation in antioxidant attributes and individual phenolics of citrus fruit peels in relation to different species and extraction solvents. Journal of the Chilean Chemical Society 61(2), 2884-2889.
Zema, D.A., Calabro, P.S., Folino, A., Tamburino, V., Zappia, G., Zimbone, S.M. (2018). Valorisation of citrus processing waste: A review. Waste Management 80:252-273
Published
2020-11-09
How to Cite
Ambriz-Pérez, D., Palomares-Ruíz, I., Gómez-Córdoba, F., Mejias-Brizuela, N., Araiza-Lizarde, N., & Santos-Ballardo, D. (2020). Integral valorization from industrial Persian lime processing wastes (Citrus latifolia Tanaka): simultaneous recovery of oils and antioxidants. Revista Mexicana De Ingeniería Química, 20(1), 367-380. https://doi.org/10.24275/rmiq/Bio1935
Section
Biotechnology