The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites

  • J.A. González-Calderón Cátedras CONACYT-Instituto de Física, Universidad Autónoma de San Luis Potosí
  • M. Peña-Juárez Doctorado Institucional en Ingeniería y Ciencia de Materiales. Universidad Autónoma de San Luis Potosí
  • R. Zarraga Departamento de Química, Universidad de Guanajuato
  • D. Contreras-López Departamento de Ingeniería Química, Universidad de Guanajuato
  • J. Vallejo-Montesinos Departamento de Química, Universidad de Guanajuato
Keywords: isotactic polypropylene, alkoxysilanes, non-isothermal crystallization, fillers, titanium dioxide

Abstract

Functionalization of fillers provides advantages in non-isothermal crystallization of isotactic polypropylene (iPP); therefore, kinetic properties iPP composites filled with alkoxysilane-functionalized titanium dioxide (TiO2) were investigated to understand the role of functional groups. The surface modification of TiO2 nanoparticle was carried out with three different alkoxysilanes: 3-aminopropyltrimethoxysilane (APTMS), 3-chloropropyltrimethoxysilane (CPTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS); after, composites were prepared 0.5% by weight in iPP. The results of the X-Ray Diffraction and Nuclear magnetic resonance analyses showed the characteristic signals of each chemical species that confirm the success of surface modification of the oxide with alkoxysilanes. The study by Differential scanning calorimetry at different cooling rates allowed to observe that the non-isothermal crystallization of iPP composites is described by Jeziorny’s and Mo’s equations; and that the addition of fillers of TiO2 modified with the alkoxysilanes changed the crystallization process thanks to the functional groups and their interface interactions with the polymer matrix; for example, the presence of CPTMS and GPTMS caused recrystallization of iPP and therefore, increased the crystallization process rate. Finally, the activation energy of the composites varied depending on the alkoxysilane used, since less energy was needed for some cases; derived from better dispersion and that the particles acted as nucleation centers.

References

Alariqi, S. A. S., Kumar, A. P., Rao, B. S. M., & Singh, R. P. (2009). Effect of ??-dose rate on crystallinity and morphological changes of ??-sterilized biomedical polypropylene. Polymer Degradation and Stability, 94(2), 272–277. https://doi.org/10.1016/j.polymdegradstab.2008.10.027
Allen, J. J., Rosenberg, E., Johnston, E., & Hart, C. (2012). Sol-Gel synthesis and characterization of silica polyamine composites: applications to metal ion capture. ACS Applied Materials and Interfaces, 4(3), 1573–1584. https://doi.org/10.1021/am201761m
Alyamac, E., Gu, H., Soucek, M. D., Qiu, S., & Buchheit, R. G. (2012). Alkoxysilane oligomer modified epoxide primers. Progress in Organic Coatings, 74(1), 67–81. https://doi.org/10.1016/j.porgcoat.2011.11.012
Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environmentA review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013
Blaine, R. L., & Kissinger, H. E. (2012a). Homer Kissinger and the Kissinger equation. Thermochimica Acta, 540, 1–6. https://doi.org/https://doi.org/10.1016/j.tca.2012.04.008
Blaine, R. L., & Kissinger, H. E. (2012b). Homer Kissinger and the Kissinger equation. Thermochimica Acta, 540, 1–6. https://doi.org/10.1016/j.tca.2012.04.008
Borovanska, I., Dobreva, T., Benavente, R., Djoumaliisky, S., & Kotzev, G. (2012). Quality assessment of recycled and modified LDPE/PP blends. Journal of Elastomers and Plastics, 44(6), 479–497. https://doi.org/10.1177/0095244312441731
Cao, J., Zuo, Y., Wang, D., Zhang, J., & Feng, S. (2017). Functional polysiloxanes: a novel synthesis method and hydrophilic applications. New Journal of Chemistry, 41(16), 8546–8553. https://doi.org/10.1039/C7NJ01294B
Chiellini, E., Corti, A., D’Antone, S., & Baciu, R. (2006). Oxo-biodegradable carbon backbone polymers - Oxidative degradation of polyethylene under accelerated test conditions. Polymer Degradation and Stability, 91(11), 2739–2747. https://doi.org/10.1016/j.polymdegradstab.2006.03.022
Chin, S., & Ai Tjong, S. (1997). Non-isothermal Crystallization Kinetics of Calcium Carbonate-filled b-Crystalline Phase Polypropylene Composites. Polymer International 95È103 Polym. Int, 44(44), 95–103. https://doi.org/10.1002/(SICI)1097-0126(199709)44:1<95::AID-PI821>3.0.CO;2-L
Cho, S., Kim, N., Lee, S., Lee, H., Lee, S. H., Kim, J., & Choi, J. W. (2016). Use of hybrid composite particles prepared using alkoxysilane-functionalized amphiphilic polymer precursors for simultaneous removal of various pollutants from water. Chemosphere, 156, 302–311. https://doi.org/10.1016/j.chemosphere.2016.05.004
Chûjô, R., Kogure, Y., & Väänänen, T. (1994). Two-site model analysis of 13C n.m.r, of polypropylene polymerized by Ziegler-Natta catalyst with external alkoxysilane donors. Polymer, 35(2), 339–342.
Connell, L. S., Gabrielli, L., Mahony, O., Russo, L., Cipolla, L., & Jones, J. R. (2017). Functionalizing natural polymers with alkoxysilane coupling agents: Reacting 3-glycidoxypropyl trimethoxysilane with poly(γ-glutamic acid) and gelatin. Polymer Chemistry, 8(6), 1095–1103. https://doi.org/10.1039/c6py01425a
Dai, X., Zhang, Z., Chen, C., Li, M., Tan, Y., & Mai, K. (2015). Non-isothermal crystallization kinetics of montmorillonite filled β-isotactic polypropylene nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(2), 829–838. https://doi.org/10.1007/s10973-015-4635-8
Dai, X., Zhang, Z., Wang, C., Ding, Q., Jiang, J., & Mai, K. (2013). A novel montmorillonite with ??-nucleating surface for enhancing ??-crystallization of isotactic polypropylene. Composites Part A: Applied Science and Manufacturing, 49, 1–8. https://doi.org/10.1016/j.compositesa.2013.01.016
Delgado Alvarado, E., Peña Juárez, M. G., Perez Perez, C., Perez, E., & Gonzalez, J. A. (2019). Improvement in the dispersion of TiO2 particles inside Chitosan-Methyl cellulose films by the use of silane coupling agent. Journal of the Mexican Chemical Society, 63(2). https://doi.org/10.29356/jmcs.v63i2.741
Demir, H., Balköse, D., & Ülkü, S. (2006). Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polymer Degradation and Stability, 91(5), 1079–1085. https://doi.org/10.1016/j.polymdegradstab.2005.07.012
Ding, Q., Zhang, Z., Wang, C., Jiang, J., Li, G., & Mai, K. (2012). Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochimica Acta, 536, 47–54. https://doi.org/10.1016/j.tca.2012.02.023
Dintcheva, N. T., Arrigo, R., Morici, E., Gambarotti, C., Carroccio, S., Cicogna, F., & Filippone, G. (2015). Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight Polyethylene-based nanocomposites. Composites Part B: Engineering, 82, 196–204. https://doi.org/10.1016/j.compositesb.2015.07.017
Fuad, M. Y. A., Ismail, Z., Ishak, Z. A. M., & Omar, A. K. M. (1995). Application of rice husk ash as fillers in polypropylene: Effect of titanate, zirconate and silane coupling agents. European Polymer Journal, 31(9), 885–893. https://doi.org/10.1016/0014-3057(95)00041-0
Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Almendarez-Camarillo, A., Montiel, R., & Pérez, E. (2016). Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochimica Acta, 631, 8–17. https://doi.org/10.1016/j.tca.2016.03.007
Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Mata-Padilla, J. M., Pérez, E., & Almendarez-Camarillo, A. (2015). Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science, 50(24), 7998–8006. https://doi.org/10.1007/s10853-015-9365-6
Gonzalez-Calderon, J A, Vallejo-Montesinos, J., Almendarez-Camarillo, A., Montiel, R., & Pérez, E. (2016). Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochimica Acta, 631, 8–17. https://doi.org/10.1016/j.tca.2016.03.007
Gonzalez-Calderon, J A, Vallejo-Montesinos, J., Martínez-Martínez, H. N., Cerecero-Enríquez, R., & López-Zamora, L. (2019). EFFECT OF CHEMICAL MODIFICATION OF TITANIUM DIOXIDE PARTICLES VIA SILANIZATION UNDER PROPERTIES OF CHITOSAN/POTATO-STARCH FILMS. Revista Mexicana de Ingeniería Química, 18(3), 913–927. Retrieved from www.rmiq.org
Gonzalez-Calderon, José Amir, Pérez-Pérez, C., Pérez Rodríguez, R. Y., Fierro-González, J. C., & Vallejo-Montesinos, J. (2019). Silanization of di-n-octyldichlorosilane as a route to improve the integration of titanium dioxide in polypropylene. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-019-08159-y
Gonzalez-Rodriguez, V., Escobar-Barrios, V., Peña-Juárez, M. G., & Pérez, E. (2020). Thermochimica Acta Effect of aliphatic chain in dicarboxylic acids on non-isothermal crystallization and mechanical behavior of titanium dioxide / iPP composites. Thermochimica Acta, 686(August 2019), 178543. https://doi.org/10.1016/j.tca.2020.178543
González, A., Pérez, E., Almendarez, A., Villegas, A., & Vallejo-Montesinos, J. (2016). Calcium pimelate supported on TiO2nanoparticles as isotactic polypropylene prodegradant. Polymer Bulletin, 73(1). https://doi.org/10.1007/s00289-015-1469-2
Habila, B., Ukoha, P. O., Okoduwa, S. I. R., Salim, A., Babangida, M. B., & Simon, A. (2020). Synthesis and characterization of an immobilized thiosalicylic-mercaptoethanol biligand system and its application in the detoxification of chromium(iii) and iron(iii) ions from tannery wastewater. New Journal of Chemistry, 44(6), 2321–2327. https://doi.org/10.1039/c9nj05072h
He, Z. L., Chen, L. N., Zhang, L., Ren, H. Y., Xu, M. Di, & Lou, Y. W. (2020). Effect of filler functional groups on the mechanical properties and relevant mechanisms of polydicyclopentadiene nanocomposites. Journal of Applied Polymer Science, (December 2019), 1–11. https://doi.org/10.1002/app.49010
Huang, L., Wang, H., Wang, W., Wang, Q., & Song, Y. (2016). Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 27(4), 949–958. https://doi.org/10.1007/s11676-016-0209-2
Huang, M. ‐R, Li, X. ‐G, & Fang, B. ‐R. (1995). Β‐Nucleators and Β‐Crystalline Form of Isotactic Polypropylene. Journal of Applied Polymer Science, 56(10), 1323–1337. https://doi.org/10.1002/app.1995.070561014
Huber, M. P., Kelch, S., & Berke, H. (2016). FTIR investigations on hydrolysis and condensation reactions of alkoxysilane terminated polymers for use in adhesives and sealants. International Journal of Adhesion and Adhesives, 64, 153–162. https://doi.org/10.1016/j.ijadhadh.2015.10.014
Huo, H., Jiang, S., An, L., & Feng, J. (2004). Influence of Shear on Crystallization Behavior of the β Phase in Isotactic Polypropylene with β-Nucleating Agent. Macromolecules, 37(7), 2478–2483. https://doi.org/10.1021/ma0358531
Ijadpanah-saravi, H., Safari, M., & Khodadadi-darban, A. (2014). Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. (November 2015). https://doi.org/10.1080/00032719.2014.880170
Ismail, H., Mega, L., & Abdul Khalil, H. P. S. (2001). Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polymer International, 50(5), 606–611. https://doi.org/10.1002/pi.673
Issa, A. A., & Luyt, A. S. (2019). Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers, 11(3). https://doi.org/10.3390/polym11030537
Jagur-Grodzinski, J. (2006). Nanostructured polyolefins / clay composites : role of the molecular interaction at the interface. Polym. Adv. Technol., 17(April), 395–418. https://doi.org/10.1002/pat
Ju, S.-P., Chen, C.-C., Huang, T.-J., Liao, C.-H., Chen, H.-L., Chuang, Y.-C., … Chen, H.-T. (2016). Investigation of the structural and mechanical properties of polypropylene-based carbon fiber nanocomposites by experimental measurement and molecular dynamics simulation. Computational Materials Science, 115, 1–10. https://doi.org/10.1016/j.commatsci.2015.12.032
Karger-Kocsis, J. (1995). Polypropylene Structure, blends and Composites : Volume 3 Composites. Springer Netherlands.
Kaya, D., McNally, T., Douglas, P., Coburn, N., & Gupta, J. (2018). Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene) and MWCNTs. Advanced Industrial and Engineering Polymer Research, 1(1), 99–110. https://doi.org/10.1016/j.aiepr.2018.06.001
Kesmez, Ö. (2020). Hydrophobic, organic–inorganic hybrid sol–gel coatings containing boehmite nanoparticles for metal corrosion protection. Chemical Papers, 74(2), 673–688. https://doi.org/10.1007/s11696-019-00931-6
Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217. https://doi.org/10.6028/jres.057.026
Koch, K. M. (1983). Silane coupling agents. In Journal of Organometallic Chemistry (Vol. 246, pp. c27–c28). https://doi.org/10.1016/s0022-328x(00)98664-9
Lee, C.-W., Joo, S.-W., & Gong, M.-S. (2005). Polymeric humidity sensor using polyelectrolytes derived from alkoxysilane cross-linker. Sensors and Actuators B: Chemical, 105(2), 150–158. https://doi.org/10.1016/j.snb.2004.05.037
Li, J. X., & Cheung, W. L. (1997). Pimelic Acid-Based Nucleating Agents for Hexagonal CrystaIIine Polypropylene. Journal of Vinyl and Additive Technology, 3(2), 151–156. https://doi.org/10.1002/vnl.10182
Li, J. X., & Cheung, W. L. (1999). Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer, 40(8), 2085–2088. https://doi.org/10.1016/S0032-3861(98)00425-X
Li, M., Li, G., Zhang, Z., Dai, X., & Mai, K. (2014). Enhanced β-crystallization in polypropylene random copolymer with a supported β-nucleating agent. Thermochimica Acta, 598, 36–44. https://doi.org/10.1016/j.tca.2014.11.004
López-Zamora, L., Martínez-Martínez, H. N., & González-Calderón, J. A. (2018). Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Materials Chemistry and Physics, 217(June), 285–290. https://doi.org/10.1016/j.matchemphys.2018.06.063
Lotz, B. (1998). α and β phases of isotactic polypropylene: A case of growth kinetics “phase reentrency” in polymer crystallization. Polymer, 39(19), 4561–4567. https://doi.org/10.1016/S0032-3861(97)10147-1
Lv, Y., Huang, Y., Kong, M., & Li, G. (2013). Improved thermal oxidation stability of polypropylene films in the presence of β-nucleating agent. Polymer Testing, 32(2), 179–186. https://doi.org/10.1016/j.polymertesting.2012.10.008
Mani, M. R., Chellaswamy, R., Marathe, Y. N., & Pillai, V. K. (2016). New Understanding on Regulating the Crystallization and Morphology of the β-Polymorph of Isotactic Polypropylene Based on Carboxylate-Alumoxane Nucleating Agents. Macromolecules, 49(6), 2197–2205. https://doi.org/10.1021/acs.macromol.5b02466
Maryudi., Hisyam, A., Yunus, R., & Bag, M. (2013). Thermo-oxidative Degradation of High Density Polyethylene Containing Manganese Laurate. International Journal of Engineering Research and Applications (IJERA), 3(2), 1156–1165.
Meer, S., Kausar, A., & Iqbal, T. (2016). Attributes of Polymer and Silica Nanoparticle Composites: A Review. Polymer-Plastics Technology and Engineering, 55(8), 826–861. https://doi.org/10.1080/03602559.2015.1103267
Mendes, A. A., Cunha, A. M., & Bernardo, C. A. (2011). Study of the degradation mechanisms of polyethylene during reprocessing. Polymer Degradation and Stability, 96(6), 1125–1133. https://doi.org/10.1016/j.polymdegradstab.2011.02.015
Mendoza, G., Peña-Juárez, M. G., Perez, E., & Gonzalez-Calderon, J. A. (2020). Used of Chemically Modified Titanium Dioxide Particles to Mediate the Non-isothermal Cold Crystallization of Poly(latic acid). Journal of the Mexican Chemical Society, 64(2), 44–63. https://doi.org/10.29356/jmcs.v64i2.1126
Muratov, D. S., Kuznetsov, D. V., Il’inykh, I. A., Burmistrov, I. N., & Mazov, I. N. (2015). Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Composites Science and Technology, 111, 40–43. https://doi.org/10.1016/j.compscitech.2015.03.003
Nocuń, M., Siwulski, S., Leja, E., & Jedliński, J. (2005). Structural studies of TEOS-tetraethoxytitanate based hybrids. Optical Materials, 27(9), 1523–1528. https://doi.org/10.1016/j.optmat.2005.01.014
Pantoja, M., Encinas, N., Abenojar, J., & Martínez, M. A. (2013). Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion. Applied Surface Science, 280, 850–857. https://doi.org/10.1016/j.apsusc.2013.05.074
Papageorgiou, G. Z., & Panayiotou, C. (2011). Crystallization and melting of biodegradable poly(propylene suberate). Thermochimica Acta, 523(1–2), 187–190. https://doi.org/10.1016/j.tca.2011.05.023
Reingruber, E., & Buchberger, W. (2010). Analysis of polyolefin stabilizers and their degradation products. Journal of Separation Science, 33(22), 3463–3475. https://doi.org/10.1002/jssc.201000493
Schneider, M. H., & Brebner, K. I. (1985). Wood-polymer combinations: The chemical modification of wood by alkoxysilane coupling agents. Wood Science and Technology, 19(1), 67–73. https://doi.org/10.1007/BF00354754
Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., … Fernandes, M. H. (2009). Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomaterialia, 5(1), 346–355. https://doi.org/10.1016/j.actbio.2008.07.022
Sterman, S., & Marsden, J. G. (1966). Silane coupling agents. Industrial and Engineering Chemistry, 58(3), 33–37. https://doi.org/10.1021/ie50675a010
Supaphol, P., Thanomkiat, P., Junkasem, J., & Dangtungee, R. (2007). Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polymer Testing, 26(1), 20–37. https://doi.org/10.1016/j.polymertesting.2006.07.011
Tang, J., Wang, Y., Liu, H., & Belfiore, L. A. (2004). Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer, 45(7), 2081–2091. https://doi.org/10.1016/j.polymer.2003.11.046
Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase Characterization of TiO 2 Powder by XRD and TEM. Kasetsart J. (Nat. Sci.), 42, 357–361.
Thomas, S. P., Thomas, S., & Bandyopadhyay, S. (2009). Mechanical, atomic force microscopy and focussed ion beam studies of isotactic polystyrene/titanium dioxide composites. Composites Part A: Applied Science and Manufacturing, 40(1), 36–44. https://doi.org/10.1016/j.compositesa.2008.10.005
Tonda-Turo, C., Gentile, P., Saracino, S., Chiono, V., Nandagiri, V. K., Muzio, G., … Ciardelli, G. (2011). Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. International Journal of Biological Macromolecules, 49(4), 700–706. https://doi.org/10.1016/j.ijbiomac.2011.07.002
Tong, T., Zhang, J., Tian, B., Chen, F., & He, D. (2008). Preparation and characterization of anatase TiO2microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Materials Letters, 62(17–18), 2970–2972. https://doi.org/10.1016/j.matlet.2008.01.085
Uhlig, F., & Dortmund, D. (2000). Si NMR Some Practical Aspects. Inorganic Chemistry, 2(46), 208–222. https://doi.org/10.1021/ja027509+
Vallejo-Montesinos, J., Muñoz, U. M., & Gonzalez-Calderon, J. A. (2016). Mechanical properties, crystallization and degradation of polypropylene due to nucleating agents, fillers and additives. In Polypropylene: Properties, Uses and Benefits.
Vallejo-Montesinos, Javier, Cesar López Martínez, J., Montejano-Carrizales, J. M., Pérez, E., Balcázar Pérez, J., Almendárez-Camarillo, A., … Alta, N. (n.d.). Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating. https://doi.org/10.2412/mmse.96.48.950
Vallejo-Montesinos, Javier, Gámez-Cordero, J., Zarraga, R., Pérez Pérez, M. C., & Gonzalez-Calderon, J. A. (2019). Influence of the surface modification of titanium dioxide nanoparticles TiO 2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polymer Bulletin. https://doi.org/10.1007/s00289-019-02740-z
Vyazovkin, S. (2002). Is the Kissinger equation applicable to the processes that occur on cooling? Macromolecular Rapid Communications, 23(13), 771–775. https://doi.org/10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G
Wang, C., Zhang, Z., Du, Y., Zhang, J., & Mai, K. (2011). Effect of poly (styrene-co-acrylonitrile) on β-nucleation of polypropylene filled with supported β-nucleating agent. Thermochimica Acta, 524(1–2), 157–164. https://doi.org/10.1016/j.tca.2011.07.008
Wang, S., Ahmad, Z., & Mark, J. E. (1994). Polyimide-Silica Hybrid Materials Modified by Incorporation of an Organically Substituted Alkoxysilane. Chemistry of Materials, 6(7), 943–946. https://doi.org/10.1021/cm00043a013
Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031
Zhang, X., Do, M. D., & Bilyk, A. (2007). Chemical modification of wheat-protein-based natural polymers: Formation of polymer networks with alkoxysilanes to modify molecular motions and enhance the material performance. Biomacromolecules, 8(6), 1881–1889. https://doi.org/10.1021/bm070290c
Zhang, Z., Tao, Y., Yang, Z., & Mai, K. (2008). Preparation and characteristics of nano-CaCO3 supported ??-nucleating agent of polypropylene. European Polymer Journal, 44(7), 1955–1961. https://doi.org/10.1016/j.eurpolymj.2008.04.022
Zhang, Z., Wang, C., Junping, Z., & Mai, K. (2012). β-Nucleation of pimelic acid supported on metal oxides in isotactic polypropylene. Polymer International, 61(5), 818–824. https://doi.org/10.1002/pi.4148
Published
2020-12-18
How to Cite
González-Calderón, J., Peña-Juárez, M., Zarraga, R., Contreras-López, D., & Vallejo-Montesinos, J. (2020). The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana De Ingeniería Química, 20(1), 435-452. https://doi.org/10.24275/rmiq/Poly1995