Effect of potassium sorbate as an interface agent in biodegradable bi-layers polymers

  • A. Díaz-Pedraza
  • Y. Piñeros-Castro
  • R. Ortega-Toro
Keywords: bilayer sheets, interfacial agent, physicochemical properties, biodegradation


Studies that are focused on the design and development of biodegradable materials with promising physicochemical properties for industrial use have been of great importance. In this research, bilayer materials were developed using TPS monolayers assembled with monolayers sheets of amorphous polylactic acid (PLAa) and polycaprolactone (PCL). Potassium sorbate was evaluated as an interfacial adhesion material. Structural properties of the laminated materials (FTIR and SEM), behaviour with water (rate of water vapour transmission, solubility in water and moisture content) and biodegradation of the materials were evaluated. Physical and chemical interactions between the studied monolayers by the addition of potassium sorbate were found. The use of monolayer sheets of PLAa and PCL overcomes the disadvantages of the materials obtained from starch. A practical alternative was developed to obtain materials with better properties. Besides, the degradation time of TPS was evaluated and compared with other polymers. These laminated materials are a great alternative to the decrease in the use of conventional plastics and are applicable as packaging in the food industry.


Chen, G. Q., & Patel, M. K. (2012). Plastics derived from biological sources: Present and future: A technical and environmental review. Chemical Reviews, 112(4), 2082–2099. https://doi.org/10.1021/cr200162d
Chivrac, F., Pollet, E., & Avérous, L. (2009). Progress in nano-biocomposites based on polysaccharides and nanoclays. Materials Science and Engineering R: Reports, 67(1), 1–17. https://doi.org/10.1016/j.mser.2009.09.002
Chotiprayon, P., Chaisawad, B., & Yoksan, R. (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121
Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2019). Using grafted poly(ε-caprolactone)for the compatibilization of thermoplastic starch-polylactic acid blends. Reactive and Functional Polymers, 142, 25–35. https://doi.org/10.1016/j.reactfunctpolym.2019.05.013
Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575–581. https://doi.org/10.1016/j.carbpol.2014.09.005
Diani, J., Liu, Y., & Gall, K. (2006). Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polymer Engineering and Science, 46(4), 486-492. https://doi.org/10.1002/pen.20497
Diaz-Pedraza, A., Piñeros-Castro, Y., & Ortega-Toro, R. (2020). Bi-layer materials based on thermoplastic corn starch, polylactic acid and modified polypropylene. Revista Mexicana de Ingeniería Química, Supl 1, 323-331. https://doi.org/10.24275/rmiq/Alim1655
Emadian, S.M., Onay, TT. and Demirel, B. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536. doi: 10.1016/j.wasman.2016.10.006.
Fabra, M.J., Busolo, M.A., Lopez-Rubio, A., & Lagaron, J.M. (2013). Nanostructured biolayers in food packaging. Trends in Food Science and Technology, 31(1), 79–87. https://doi.org/10.1016/j.tifs.2013.01.004
Ivanič, F., Kováčová, M., & Chodák, I. (2019). The effect of plasticizer selection on properties of blends poly(butylene adipate-co-terephthalate) with thermoplastic starch. European Polymer Journal, 116, 99–105. https://doi.org/10.1016/j.eurpolymj.2019.03.042
Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775–781. https://doi.org/10.1016/j.ijbiomac.2019.08.185
Liu, C., Jiang, S., Zhang, S., Xi, T., Sun, Q., & Xiong, L. (2016). Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch/Staerke, 68(3–4), 239–248. https://doi.org/10.1002/star.201500252
Liu, W., Wang, Z., Liu, J., Dai, B., Hu, S., Hong, R., … Zeng, G. (2020). Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocolloids, 108, 106006. https://doi.org/10.1016/j.foodhyd.2020.106006
Masina, N., Choonara, Y. E., Kumar, P., du Toit, L. C., Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094
McHugh, T. H., Avena-Bustillos, R., and Krochta, J. M. (1993). Hydrophobic edible films: modified procedure for water vapour permeability and explanation of thickness effects. Journal of Food Science, 58 (4), 899–903. https://doi.org/10.1111/j.1365-2621.1993.tb09387.x.
Mathew, A. P., Oksman, K., and Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. https://doi.org/10.1002/app.21779.
Mahendraker, V., and Viraraghavan, T. (1995). Respirometry in environmental engineering. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology, 30(4), 713-734. https://doi.org/10.1080/10934529509376229.
Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56–70. https://doi.org/10.1016/j.eurpolymj.2017.07.019
Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(e{open}-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10–20. https://doi.org/10.1016/j.fpsl.2015.04.001
Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290. https://doi.org/10.1016/j.carbpol.2015.03.080
Piñeros-Guerrero, N., Piñeros-Castro, Y., & Ortega-Toro, R. (2020). Active biodegradable films based on thermoplastic starch and poly (e-caprolactone): technological application of antioxidant extracts from rice husk. Revista Mexicana de Ingeniería Química, 19 (3), 1095-1101. https://doi.org/10.24275/rmiq/poli898
Sängerlaub, S., Schmid, M., & Müller, K. (2018). Comparison of water vapour transmission rates of monolayer films determined by water vapour sorption and permeation experiments. Food Packaging and Shelf Life, 17, 80–84. https://doi.org/10.1016/j.fpsl.2018.06.004
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36–45. https://doi.org/10.1016/j.carbpol.2016.03.051
Valencia-Sullca, C., Vargas, M., Atarés, L., & Chiralt, A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloids, 75, 107–115. https://doi.org/10.1016/j.foodhyd.2017.09.008
Wei, D., Wang, H., Xiao, H., Zheng, A., & Yang, Y. (2015). Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 123, 275–282. https://doi.org/10.1016/j.carbpol.2015.01.058
Xia, G., Wan, J., Zhang, J., Zhang, X., Xu, L., Wu, J., … Zhang, J. (2016). Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydrate Polymers, 151, 223–229. https://doi.org/10.1016/j.carbpol.2016.05.080
Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27–35. https://doi.org/10.1016/j.aiepr.2019.11.002
How to Cite
Díaz-Pedraza, A., Piñeros-Castro, Y., & Ortega-Toro, R. (2020). Effect of potassium sorbate as an interface agent in biodegradable bi-layers polymers. Revista Mexicana De Ingeniería Química, 20(1), 345-354. https://doi.org/10.24275/rmiq/Alim1999
Food Engineering

Most read articles by the same author(s)