Kinetic parameters of Lactobacillus plantarum and Saccharomyces boulardii growing in a beet molasses culture media

  • C. González-Figueredo
  • O.A. Rojas-Rejón
  • A. Martínez-Vera-Negrete
  • A.E. Carranza-Volquarts
  • F.J. Estrada-Girón
  • J.C. Peña-Partida
Keywords: Probiotics, Prebiotics, Fed-batch, Mixed culture, Bioreactor


Regular consumption of probiotic microorganisms as part of the diet can contribute to improving health and mitigating the effects of metabolic syndrome diseases. Then, it is essential to design production processes for this type of microorganisms, which are optimal from the point of view of production time and cost. This paper presents a study of the effect of using a low-cost culture medium, formulated with beet molasses, which manages to enhance the growth of two types of probiotic microorganisms, Saccharomyces boulardii, and Lactobacillus plantarum. In addition to its effect on cellular biomass growth, a kinetic model for both strains growth is also presented. This model includes factors such as the S. boulardii capability to hydrolyze saccharose into their respective monosaccharides and the inhibition effect of lactic acid production on L. plantarum growth. Finally, a mixed culture production scheme is proposed for both microorganisms, in order to take advantage of the yeast's capability to hydrolyze saccharose, in order not to require the addition of extra glucose to the culture medium.


A. Nawaz, Ashfaq, A., Zaidi, S. M. A. M., Munir, M., Haq, I. U., Mukhtar, H., and Tahir, S. F. (2020). Comparison of fermentation and medical potentials of Saccharomyces with Wickerhamomyces genera. Revista Mexicana de Ingeniería Química, 19(1), 33–47.

Aghamohammadi, D., Ayromlou, H., Dolatkhah, N., Jahanjoo, F., and Shakouri, S. K. (2019). The effects of probiotic Saccharomyces boulardii on the mental health, quality of life, fatigue, pain, and indices of inflammation and oxidative stress in patients with multiple sclerosis: Study protocol for a double-blind randomized controlled clinical trials. Trials, 20(1), 1–9.

Battistella Lasta, H. F., Lentz, L., Gonçalves Rodrigues, L. G., Mezzomo, N., Vitali, L., and Salvador Ferreira, S. R. (2019). Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatalysis and Agricultural Biotechnology, 21(September).

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., and Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 26(0).

Cheirsilp, B., Shimizu, H., and Shioya, S. (2007). Kinetic modeling of kefiran production in mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. Process Biochemistry, 42(4), 570–579.

Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., and Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192–200.

Christensen, J. E., Dudley, E. G., Pederson, J. A., and Steele, J. L. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 76(1–4), 217–246.

de Llano, D. G., Gil-Sánchez, I., Esteban-Fernández, A., Ramos, A. M., Fernández-Díaz, M., Cueva, C., Moreno-Arribas, M. V., and Bartolomé, B. (2017). Reciprocal beneficial effects between wine polyphenols and probiotics: an exploratory study. European Food Research and Technology, 243(3), 531–538.

De Man, J. C. Rogosa, M. and Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal Applied Bacteriology, 23(1), 130–135.

Domínguez, R., Cuenca, E., Maté-Muñoz, J. L., García-Fernández, P., Serra-Paya, N., Estevan, M. C. L., Herreros, P. V., and Garnacho-Castaño, M. V. (2017). Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients, 9(1), 1–18.

El Enshasy, H. A., and Elsayed, E. A. (2017). Kinetics of cell growth and invertase production by the biotherapeutic yeast, Saccharomyces boulardii. Journal of Scientific and Industrial Research, 76(8), 477–484.

Gamage, S. M., Mihirani, M. K. S., Perera, O. D. A. N., and Weerahewa, H. L. D. (2016). Development of synbiotic beverage from beetroot juice using beneficial probiotic Lactobacillus casei 431. Ruhuna Journal of Science, 7(2), 64.

García-Hernández, J., Hernández-Pérez, M., Peinado, I., Andrés, A., and Heredia, A. (2018). Tomato-antioxidants enhance viability of L. reuteri under gastrointestinal conditions while the probiotic negatively affects bioaccessibility of lycopene and phenols. Journal of Functional Foods, 43(December 2017), 1–7.

González-Leos, A., Bustos-Vázquez, M. G., Rodríguez-Castillejos, G. C., Rodríguez-Durán, L. V., and Del Ángel-Del Ángel, A. (2020). Kinetics of lactic acid fermentation from sugarcane bagasse by Lactobacillus pentosus. Revista Mexicana de Ingeniera Quimica, 19(1), 377–386.

Han, K., and Levenspiel, O. (1988). Extended monod kinetics for substrate, product, and cell inhibition. Biotechnology and Bioengineering, 32(4), 430–447.

Kailasapathy, K., and Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78, 80–88.

Klarin, B., Johansson, M. L., Molin, G., Larsson, A., and Jeppsson, B. (2005). Adhesion of the probiotic bacterium Lactobacillus plantarum 299v onto the gut mucosa in critically ill patients: a randomised open trial. Critical Care (London, England), 9(3), 285–293.

Kujala, T. S., Vienola, M. S., Klika, K. D., Loponen, J. M., and Pihlaja, K. (2002). Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology, 214(6), 505–510.

Lasta, H. F. B., Lentz, L., Mezzomo, N., and Ferreira, S. R. S. (2019). Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatalysis and Agricultural Biotechnology, 19(March), 101169.

Mariat, D., Firmesse, O., Levenez, F., Guimarǎes, V. D., Sokol, H., Doré, J., Corthier, G., and Furet, J. P. (2009). The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 1–6.

Martinello, F., Roman, C. F., and de Souza, P. A. (2017). Efeitos do consumo de probióticos sobre as bifidobactérias intestinais de pacientes celíacos. Arquivos de Gastroenterologia, 54(2), 85–90.

Melgar-Lalanne, G., Ley-Martinez, J., Azuara-Nieto, E., Tellez-Medina, D. I., González-González, C. R., Gutierrez-Lopez, G. F., and Meza, T. (2018). Insight over Lactobacillus plantarum 299v physicochemical characteristics of aggregation kinetics unde starvation and different pH conditions. Revista Mexicana de Ingeniería Química, 18(1 SE-Biotechnology).

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., and Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267.

Passos, F. V., Fleming, H. P., Ollis, D. F., Felder, R. M., and McFeeters, R. F. (1994). Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Applied and Environmental Microbiology, 60(7), 2627–2636.

Renouf, M. A., Wegener, M. K., and Nielsen, L. K. (2008). An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass and Bioenergy, 32(12), 1144–1155.

Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., and Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 61(1).

Šantek, B., Gwehenberger, G., Šantek, M. I., Narodoslawsky, M., and Horvat, P. (2010). Evaluation of energy demand and the sustainability of different bioethanol production processes from sugar beet. Resources, Conservation and Recycling, 54(11), 872–877.

Valli, V., Gómez-Caravaca, A. M., Di Nunzio, M., Danesi, F., Caboni, M. F., and Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry, 60(51), 12508–12515.

Vodnar, D. C., Ranga, F., Pop, O., and Socaciu, C. (2012). Catechin-rich Tea Extracts Improve the Lactobacillus casei Growth During Lactic. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca - Agriculture, 69(2), 447–453.

Walter, J., and Ley, R. (2011). The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 65(1), 411–429.

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.

How to Cite
González-Figueredo, C., Rojas-Rejón, O., Martínez-Vera-Negrete, A., Carranza-Volquarts, A., Estrada-Girón, F., & Peña-Partida, J. (2020). Kinetic parameters of Lactobacillus plantarum and Saccharomyces boulardii growing in a beet molasses culture media. Revista Mexicana De Ingeniería Química, 20(1), 467-478.