Agave salmiana syrup improves the production of recombinant human interleukin-2 in Escherichia coli

Keywords: codon optimization, fructose, NaCl inducer, recombinant protein, synthetic gene.

Abstract

The expression of heterologous proteins in Escherichia coli is strongly affected by the type of carbon source used. In this work, the expression of a synthetic codon-optimized gene of human interleukin-2 in E. coli BL21-SI, carrying plasmid pET12a-hIL2 is presented. Glucose, fructose or Agave syrup from Agave salmiana, were used as carbon sources for production of recombinant human IL-2 (rhIL-2) in 1.5-L bioreactor aerobic cultures using mineral medium. Codon optimization of the native hIL-2 gene eliminated the presence of 35 rare codons for E. coli, and improved the codon usage up to 76% compared with the native gene sequence. Cultures using 10 g/L glucose showed the lowest production of rhIL-2, and in contrast, cultures using fructose improved the production of rhIL-2 1.9-times. The utilization of fructose from Agave syrup enhanced the rhIL-2 production 3.9-times, reaching 103.42±6.61 mgIL-2/L. The specific rhIL-2 production rate (5.52±0.33 mgIL-2/gDCW·h) using Agave syrup was also the highest. These results indicate that Agave syrup stimulates the production of rhIL-2 and it is an inexpensive alternative carbon source. This research abilities the potential use the Agaves to produce alternative and valuable biotechnological products instead the alcoholic beverages.

References

Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z., Khan, S. B., and Patching, S. G. (2018). Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli, Protein Expression and Purification Academic Press144, 12–18. https://doi.org/10.1016/J.PEP.2017.11.005.
Althubiani, A. S., Al-Ghamdi, S. B., Samreen, Qais, F. A., Khan, M. S., Ahmad, I., and Malak, H. A. (2019). Chapter 4 - Plant-Derived Prebiotics and Its Health Benefits, eds. M. S. Ahmad Khan, I. Ahmad, and D. B. T.-N. L. to P. ChattopadhyayAcademic Presspp. 63–88. https://doi.org/https://doi.org/10.1016/B978-0-12-814619-4.00004-5.
Alva, A., Daniels, G. A., Wong, M. K. K., Kaufman, H. L., Morse, M. A., McDermott, D. F., Clark, J. I., Agarwala, S. S., Miletello, G., Logan, T. F., Hauke, R. J., Curti, B., Kirkwood, J. M., Gonzalez, R., Amin, A., Fishman, M., Agarwal, N., Lowder, J. N., Hua, H., Aung, S., and Dutcher, J. P. (2016). Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma, Cancer Immunology, Immunotherapy 65, 1533–1544. https://doi.org/10.1007/s00262-016-1910-x.
Aristidou, A. A., San, K. Y., and Bennett, G. N. (1999). Improvement of biomass yield and recombinant gene expression in escherichia coli by using fructose as the primary carbon source, Biotechnology Progress 15, 140–145. https://doi.org/10.1021/bp980115v.
Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M. M., Ramadan, H. A. I., Saini, K. S., Baeshen, N. A., and Redwan, E. M. (2015). Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives., Journal of microbiology and biotechnology Korea (South)25, 953–962. https://doi.org/10.4014/jmb.1412.12079.
Bulmer, M. (1987). Coevolution of codon usage and transfer RNA abundance, Nature England325, 728–730. https://doi.org/10.1038/325728a0.
Carneiro, S., Ferreira, E. C., and Rocha, I. (2013). Metabolic responses to recombinant bioprocesses in Escherichia coli, Journal of Biotechnology Elsevier B.V.164, 396–408. https://doi.org/10.1016/j.jbiotec.2012.08.026.
Choudhry, H., Helmi, N., Abdulaal, W. H., Zeyadi, M., Zamzami, M. A., Wu, W., Mahmoud, M. M., Warsi, M. K., Rasool, M., and Jamal, M. S. (2018). Prospects of IL-2 in Cancer Immunotherapy, BioMed Research International 2018. https://doi.org/10.1155/2018/9056173.
Cui, W., Wang, Q., Zhang, F., Zhang, S.-C., Chi, Z.-M., and Madzak, C. (2011). Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene, Process Biochemistry 46, 1442–1448. https://doi.org/https://doi.org/10.1016/j.procbio.2011.03.017.
Curti, B., Daniels, G. A., McDermott, D. F., Clark, J. I., Kaufman, H. L., Logan, T. F., Singh, J., Kaur, M., Luna, T. L., Gregory, N., Morse, M. A., Wong, M. K. K., and Dutcher, J. P. (2017). Improved survival and tumor control with Interleukin-2 is associated with the development of immune-related adverse events: data from the PROCLAIMSM registry, Journal for ImmunoTherapy of Cancer 5, 102. https://doi.org/10.1186/s40425-017-0307-5.
Davis, S. C., Dohleman, F. G., and Long, S. P. (2011). The global potential for Agave as a biofuel feedstock, GCB Bioenergy 3, 68–78. https://doi.org/10.1111/j.1757-1707.2010.01077.x.
Delgado-Lemus, A., Casas, A., and Téllez, O. (2014). Distribution, abundance and traditional management of Agave potatorumin the Tehuac{á}n Valley, Mexico: bases for sustainable use of non-timber forest products, Journal of Ethnobiology and Ethnomedicine 10, 63. https://doi.org/10.1186/1746-4269-10-63.
Dinarello, C. A. (2007). Historical insights into cytokines, European Journal of Immunology John Wiley & Sons, Ltd37, S34–S45. https://doi.org/10.1002/eji.200737772.
Donahue, R. A., and Bebee, R. L. (1996). BL21-SI Competent Cells for Protein Expression in E. coli, Life Tech inc 49–51. https://doi.org/10.1007/s10071-013-0651-x.
Du, W., Song, Y., Liu, M., Yang, H., Zhang, Y., Fan, Y., Luo, X., Li, Z., Wang, N., He, H., Zhou, H., Ma, W., and Zhang, T. (2016). Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source, Biotechnology Letters Springer Netherlands38, 1571–1577. https://doi.org/10.1007/s10529-016-2133-0.
Eiteman, M. A., and Altman, E. (2006). Overcoming acetate in Escherichia coli recombinant protein fermentations, Trends in Biotechnology 24, 530–536. https://doi.org/10.1016/j.tibtech.2006.09.001.
Elena, C., Ravasi, P., Castelli, M., Peiru, S., and Menzella, H. (2014). Expression of codon optimized genes in microbial systems: current industrial applications and perspectives , Frontiers in Microbiology .
Escalante, A., López Soto, D. R., Velázquez Gutiérrez, J. E., Giles-Gómez, M., Bolívar, F., and López-Munguía, A. (2016). Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects , Frontiers in Microbiology .
Feldmann, M. (2008). Many cytokines are very useful therapeutic targets in disease, The Journal of clinical investigation American Society for Clinical Investigation118, 3533–3536. https://doi.org/10.1172/JCI37346.
Glitza, I. C., Rohlfs, M., Guha-Thakurta, N., Bassett, R. L., Bernatchez, C., Diab, A., Woodman, S. E., Yee, C., Amaria, R. N., Patel, S. P., Tawbi, H., Wong, M., Hwu, W.-J., Hwu, P., Heimberger, A., McCutcheon, I. E., Papadopoulos, N., and Davies, M. A. (2018). Retrospective review of metastatic melanoma patients with leptomeningeal disease treated with intrathecal interleukin-2, ESMO Open 3, e000283. https://doi.org/10.1136/esmoopen-2017-000283.
Gupta, S. K., and Shukla, P. (2016). Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications, Critical Reviews in Biotechnology Taylor & Francis36, 1089–1098. https://doi.org/10.3109/07388551.2015.1084264.
Hempfling, W. P., and Mainzer, S. E. (1975). Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture, Journal of bacteriology 123, 1076–1087.
Hénaut, A., and Danchin, A. (1996). Analysis and predictions from Escherichia coli sequences, or E. coli in silico, Escherichia Coli and Salmonella: Cellular and Molecular Biology 2047–2066.
Hyung, J. C., Hwa, S. S., Hye, J. L., Hye, S. C., Dalal, N. N., Pham, M. Q., and Bentley, W. E. (2005). Comparative production of human interleukin-2 fused with green fluorescent protein in several recombinant expression systems, Biochemical Engineering Journal 24, 225–233. https://doi.org/10.1016/j.bej.2005.03.002.
Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms, Molecular biology and evolution United States2, 13–34. https://doi.org/10.1093/oxfordjournals.molbev.a040335.
Karlin, S., Mrázek, J., Campbell, A., and Kaiser, D. (2001). Characterizations of Highly Expressed Genes of Four Fast-Growing Bacteria, Journal of Bacteriology 183, 5025 LP – 5040. https://doi.org/10.1128/JB.183.17.5025-5040.2001.
Komar, A. A. (2016). The Yin and Yang of codon usage, Human molecular genetics Oxford University Press25, R77–R85. https://doi.org/10.1093/hmg/ddw207.
Lecina, M., Sarró, E., Casablancas, A., Gòdia, F., and Cairó, J. J. (2013). IPTG limitation avoids metabolic burden and acetic acid accumulation in induced fed-batch cultures of Escherichia coli M15 under glucose limiting conditions, Biochemical Engineering Journal 70, 78–83. https://doi.org/https://doi.org/10.1016/j.bej.2012.10.006.
Leemans, R., Remaut, E., and Fiers, W. (1987). A broad-host-range expression vector based on the p(L) promoter of coliphage λ: Regulated synthesis of human interleukin 2 in Erwinia and Serratia species, Journal of Bacteriology 169, 1899–1904. https://doi.org/10.1128/jb.169.5.1899-1904.1987.
López, M. G., and Urías-Silvas, J. E. (2007). Prebiotic effect of fructans from Agave, Dasylirion and Nopal, Acta Horticulturae 744, 397–404. https://doi.org/10.17660/ActaHortic.2007.744.45.
Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. (1951). Protein measurement with the Folin phenol reagent, Analytical Biochemistry 217, 220–230. https://doi.org/10.1016/0304-3894(92)87011-4.
MacDonald, H. L., and Neway, J. O. (1990). Effects of medium quality on the expression of human interleukin-2 at high cell density in fermentor cultures of Escherichia coli K-12, Applied and Environmental Microbiology 56, 640–645. https://doi.org/10.1128/aem.56.3.640-645.1990.
Malek, T. R. (2008). The Biology of Interleukin-2, Annual Review of Immunology 26, 453–479. https://doi.org/10.1146/annurev.immunol.26.021607.090357.
Mancilla-Margalli, N. A., and López, M. G. (2006). Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species, Journal of Agricultural and Food Chemistry American Chemical Society54, 7832–7839. https://doi.org/10.1021/jf060354v.
Mart́inez-Aguilar, J. F., and Peña-Álvarez, A. (2009). Characterization of five typical Agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography, Journal of Agricultural and Food Chemistry 57, 1933–1939. https://doi.org/10.1021/jf802141d.
Matakas, J. D., Balan, V., Iv, W. F. C., and Gao, D. (2013). Plant-Produced Recombinant Human Interleukin-2 and Its Activity Against splenic CD4 + T-cells, International Journal of life Sciences Biotechnology and Pharma research 2, 192–203.
Medina-Rivero, E., Balderas-Hernández, V. E., Ordoñez-Acevedo, L. G., Paz-Maldonado, L. M. T., Barba-De La Rosa, A. P., and De León-Rodríguez, A. (2007). Modified penicillin acylase signal peptide allows the periplasmic production of soluble human interferon-γ but not of soluble human interleukin-2 by the Tat pathway in Escherichia coli, Biotechnology Letters 29. https://doi.org/10.1007/s10529-007-9395-5.
Michel-Cuella, C., Gallegos Fonseca, G., Maldonado Cervantes, E., and Aguilar Rivera, N. (2015). Effect of Temperature and Ph Environment on the Hydrolysis of Maguey Fructans To Obtain Fructose Syrup, Revista Mexicana de Ingeniería Química 14, 615–622.
Mielenz, J. R., Rodriguez, M., Thompson, O. A., Yang, X., and Yin, H. (2015). Development of Agave as a dedicated biomass source: production of biofuels from whole plants, Biotechnology for Biofuels 8, 79. https://doi.org/10.1186/s13068-015-0261-8.
Núñez, H. M., Rodríguez, L. F., and Khanna, M. (2011). Agave for tequila and biofuels: An economic assessment and potential opportunities, GCB Bioenergy 3, 43–57. https://doi.org/10.1111/j.1757-1707.2010.01084.x.
Oliveira, L., Oliveira, T., Contiero, J., and Cazetta, M. (2016). Agave syrup as a substrate for inulinase production by Kluyveromyces marxianus NRRL Y-7571, Acta Scientiarum. Biological Sciences 38, 283. https://doi.org/10.4025/actascibiolsci.v38i3.31489.
Pinos-Rodríguez, J. M., Zamudio, M., and González, S. S. (2008). The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves, South African Journal of Animal Sciences 38, 43–50. https://doi.org/10.4314/sajas.v38i1.4108.
Ramani, T., Auletta, C. S., Weinstock, D., Mounho-Zamora, B., Ryan, P. C., Salcedo, T. W., and Bannish, G. (2015). Cytokines: The Good, the Bad, and the Deadly, International Journal of Toxicology SAGE Publications Inc34, 355–365. https://doi.org/10.1177/1091581815584918.
Roe, A. J., McLaggan, D., Davidson, I., O’Byrne, C., and Booth, I. R. (1998). Perturbation of Anion Balance during Inhibition of Growth of <em>Escherichia coli</em> by Weak Acids, Journal of Bacteriology 180, 767 LP – 772. https://doi.org/10.1128/JB.180.4.767-772.1998.
Rosano, G. L., and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges , Frontiers in Microbiology .
Rosenberg, S. A., Yang, J. C., Topalian, S. L., Schwartzentruber, D. J., Weber, J. S., Parkinson, D. R., Seipp, C. A., Einhorn, J. H., and White, D. E. (1994). Treatment of 283 Consecutive Patients With Metastatic Melanoma or Renal Cell Cancer Using High-Dose Bolus Interleukin 2, JAMA 271, 907–913. https://doi.org/10.1001/jama.1994.03510360033032.
Serra-Puche, M. C., & Lazcano, J. C. (2006). Mezcal yesterday and today., Voices of México CISAN-UNAM 75, 37–43.
Sezonov, G., Joseleau-Petit, D., and D’Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth, Journal of Bacteriology 189, 8746–8749. https://doi.org/10.1128/JB.01368-07.
Shi, X., Xie, J., Liao, S., Wu, T., Zhao, L.-G., Ding, G., Wang, Z., and Xiao, W. (2017). High-level expression of recombinant thermostable β-glucosidase in Escherichia coli by regulating acetic acid, Bioresource Technology 241, 795–801. https://doi.org/https://doi.org/10.1016/j.biortech.2017.05.105.
Shiloach, J., and Rinas, U. (2009). Glucose and Acetate Metabolism in E. coli -- System Level Analysis and Biotechnological Applications in Protein Production Processes, in Systems Biology and Biotechnology of Escherichia colied. S. Y. LeeDordrecht: Springer Netherlandspp. 377–400. https://doi.org/10.1007/978-1-4020-9394-4_18.
Singh, R. S., Singh, T., and Larroche, C. (2019). Biotechnological applications of inulin-rich feedstocks, Bioresource Technology 273, 641–653. https://doi.org/https://doi.org/10.1016/j.biortech.2018.11.031.
Szenk, M., Dill, K. A., and de Graff, A. M. R. (2017). Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis, Cell Systems Elsevier Inc.5, 95–104. https://doi.org/10.1016/j.cels.2017.06.005.
Tayal, V., and Kalra, B. S. (2008). Cytokines and anti-cytokines as therapeutics — An update, European Journal of Pharmacology Elsevier579, 1–12. https://doi.org/10.1016/J.EJPHAR.2007.10.049.
Torres, I., Casas, A., Vega, E., Martínez-Ramos, M., and Delgado-Lemus, A. (2015). Population Dynamics and Sustainable Management of Mescal Agaves in Central Mexico: Agave potatorum in the Tehuac{á}n-Cuicatl{á}n Valley, Economic Botany 69, 26–41. https://doi.org/10.1007/s12231-014-9295-2.
Ueno, K., Sonoda, T., Yoshida, M., Shiomi, N., and Onodera, S. (2018). Purification, characterization, and functional analysis of a novel 6G&1-FEH mainly hydrolyzing neokestose from asparagus, Journal of Experimental Botany 69, 4295–4308. https://doi.org/10.1093/jxb/ery234.
Walsh, G. (2018). Biopharmaceutical benchmarks 2018, Nature Biotechnology Nature Publishing Group36, 1136–1145. https://doi.org/10.1038/nbt.4305.
Williams, D. P., Regier, D., Akiyoshi, D., Genbauffe, F., and Murphy, J. R. (1988). Design, synthesis and expression of a human interleukin-2 gene incorporating the codon usage bias found in highly expressed Escherichia coli genes, Nucleic acids research 16, 10453–10467. https://doi.org/10.1093/nar/16.22.10453.
Wu, Y., Jia, X., Huang, D., Zheng, J., Hu, Z., and Xu, C. (2019). Production, structural characterization, and antiproliferative activity of exopolysaccharide produced by Scleroderma areolatum Ehrenb with different carbon source, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] Springer International Publishing50, 625–632. https://doi.org/10.1007/s42770-019-00071-9.
Zeng, H., and Yang, A. (2019). Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli, Biotechnology and Bioengineering 116, 1484–1495. https://doi.org/10.1002/bit.26943.
Published
2020-11-19
How to Cite
Balderas-Hernández, V., Medina-Rivero, E., Barba-De la Rosa, A., & De León-Rodríguez, A. (2020). Agave salmiana syrup improves the production of recombinant human interleukin-2 in Escherichia coli. Revista Mexicana De Ingeniería Química, 20(1), 399-412. https://doi.org/10.24275/rmiq/Bio2004
Section
Biotechnology

Most read articles by the same author(s)