Molecular docking of oxidases from Pleurotus ostreatus and the activity of those produced by ARS 3526 strain grown in both, submerged and solid-state fermentations

  • L.D. Herrera-Zúñiga
  • M. González-Palma
  • G. Díaz-Godínez
  • D. Martínez-Carrera
  • C. Sánchez
  • R. Díaz


Pleurotus ostreatus is a basidiomycete fungus capable of producing oxidases involved in the degradation of lignin, such as laccase (Lac), manganese peroxidase (MnP), versatile peroxidase (VP), veratryl alcohol oxidase (VAO) and dye-decolorizing peroxidase (DyP). In this research, the molecular docking showed that the interaction between Mn-ion, ABTS or DMP ligand with the respective oxidases studied were strongly supported by exposed GLU and ASP charged residues H-bonded or hydrophobic-bonded, in most of the complexes, mainly GLU and ASP played a very important role in the union, especially in the presence of the Mn-ion. On the other hand, the growth and activity of such enzymes of Pleurotus ostreatus ARS 3526 grown in both, submerged fermentation (SmF) and solid-state fermentation (SSF) were evaluated. The specific growth rate in SSF was 2.5 times higher than in SmF. The values of activity of Lac, VP and DyP were higher in the SSF, of the VAO activity was similar in both fermentation systems and SmF had the higher MnP activity value in comparison with SSF. This study provides evidence of the enzymatic potential of this fungus and shows the similarities in charged amino acids when used in their catalytic interactions, and the intimate relationship between the enzyme and its substrate.


Anastacio-López, Z. S., Gonzalez-Calderon, J. A., Saldivar-Guerrero, R., Velasco-Santos, C., Martínez-Hernández, A. L., Fierro-González, J. C., Almendárez-Camarillo, A. (2019). Modification of graphene oxide to induce beta crystals in isotactic polypropylene. Journal of Materials Science, 54(1), 427-443.

Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Khaidir, R. E. M. (2018). Synthesis and structural properties of coconut husk as potential silica source. Results in Physics, 11, 1–4.

Bledzki, A. K., Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2), 221-274.

Bledzki, A. K., Mamun, A. A., Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846.

Diaz-Pedraza, A., Piñeros-Castro, Y., Ortega-Toro, R. (2020). Bi-layer materials based on thermoplastic corn starch, polylactic acid and modified polypropylene. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 323-331.

Ding, Q., Zhang, Z., Wang, C., Jiang, J., Li, G., Mai, K. (2013). The β-nucleating effect of wollastonite-filled isotactic polypropylene composites. Polymer Bulletin, 70(3), 919–938.

Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323–331.

Etaati, A., Pather, S., Fang, Z., Wang, H. (2014). The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Composites Part B: Engineering, 62, 19–28.

Fahlén, J., Salmén, L. (2003). Cross-sectional structure of the secondary wall of wood fibers as affected by processing. Journal of Materials Science, 38(1), 119–126.

García-Cruz, H., Jaime-Fonseca, M., Von Borries-Medrano, E., Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 395-412.

Gil-López, D. L., Lois-Correa, J. A., Sánchez-Pardo, M. E., Domínguez-Crespo, M. A., Torres-Huerta, A. M., Rodríguez-Salazar, A. E., Orta-Guzmán, V. N. (2019). Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments. Industrial Crops and Products, 135, 159-169.

Gonzalez-Calderon, J. A., Castrejon-Gonzalez, E. O., Medellin-Rodriguez, F. J., Stribeck, N., Almendarez-Camarillo, A. (2015). Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on b-crystal formation in an isotactic polypropylene (iPP) matrix. Journal of Materials Science, 50, 1457–1468.

Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Mata-Padilla, J. M., Pérez, E., Almendarez-Camarillo, A. (2015). Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science, 50(24), 7998–8006.

Gou, J., Zhang, L., Li, C. (2020). A new method combining modification of montmorillonite and crystal regulation to enhance the mechanical properties of polypropylene. Polymer Testing, 82, 106236.

Gradys, A., Sajkiewicz, P., Minakov, A. A., Adamovsky, S., Schick, C., Hashimoto, T., Saijo, K. (2005). Crystallization of polypropylene at various cooling rates. Materials Science and Engineering: A, 413, 442–446.

Hidalgo-Salazar, M. Á., Correa-Aguirre, J. P., Montalvo-Navarrete, J. M., Lopez-Rodriguez, D. F., Rojas-González, A. F. (2018). Recycled polypropylene-coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. In Thermosoftening Plastics. IntechOpen.

Hosokawa, M. N., Darros, A. B., Moris, V. A. D. S., Paiva, J. M. F. D. (2017). Polyhydroxybutyrate composites with random mats of sisal and coconut fibers. Materials Research, 20(1), 279-290.

Huang, L., Wu, Q., Wang, Q., Wolcott, M. (2020). Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 130, 105765.

Jacob, M., Thomas, S., Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7–8), 955–965.

Jahan, M. S., Saeed, A., He, Z., Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451–459.

Li, J., He, W., Long, L., Zhang, K., Xiang, Y., Zhang, M., Yin, X., Yu, J. (2018). A novel silica-based nucleating agent for polypropylene: Preparation, characterization, and application. Journal of Vinyl and Additive Technology, 24(1), 58–67.

Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., de Muniz, G. B., Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate polymers, 102, 576-583.

Luo, S., Zheng, Y., Zheng, Z., Wu, H., Shen, J., Guo, S. (2019). Competitive growth of α-and β-transcrystallinity in isotactic polypropylene induced by the multilayered distribution of α-nucleating agents: Toward high mechanical performances. Chemical Engineering Journal, 355, 710-720.

Mishra, L., Basu, G. (2020). Coconut fibre: its structure, properties and applications. In Handbook of Natural Fibres (pp. 231-255). Woodhead Publishing.

Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., Tripathy, S. S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites science and technology, 63(10), 1377-1385.

Morán, J. I., Alvarez, V. A., Cyras, V. P., Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149–159.

Nayak, S. K., Mohanty, S., Samal, S. K. (2009). Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Materials Science and Engineering A, 523(1–2), 32–38.

Neethirajan, S., Gordon, R., Wang, L. (2009). Potential of silica bodies (phytoliths) for nanotechnology. Trends in Biotechnology, 27(8), 461–467.

Papageorgiou, D. G., Chrissafis, K., Bikiaris, D. N. (2015). β-Nucleated Polypropylene: Processing, Properties and Nanocomposites. Polymer Reviews, 55(4), 596–629.

Pereira, P. H. F., De Freitas Rosa, M., Cioffi, M. O. H., De Carvalho Benini, K. C. C., Milanese, A. C., Voorwald, H. J. C., Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: A review. Polimeros, 25(1), 9–22.

Poletto, M. (2017). Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas. Ciencia y tecnología, 19(4), 433-442.

Raveendran, K., Ganesh, A., Khilar, K. C. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel, 75(8), 987–998.

de Rodriguez, N. L. G., Thielemans, W., Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261-270.

Sanjuan-Raygoza, R. J., Jasso-Gastinel, C. F. (2009). Effect of waste agave fiber on the reinforcing of virgin or recycled polypropylene. Revista Mexicana de Ingeniería Química, 8(3), 319-327.

Satyanarayana, K. G., Kulkarni, A. G., Rohatgi, P. K. (1981). Structure and properties of coir fibres. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences, 4(4), 419–436.

Tan, I. A. W., Ahmad, A. L., Hameed, B. H. (2008). Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials, 153(1–2), 709–717.

Tapia-Picazo, J.C., García-Chávez, A., Gonzalez-Nuñez, R., Bonilla-Petriciolet, A., Luna-Bárcenas, G., Champión-Coria, A., Alvarez-Castillo, A. (2014). Performance of a modified extruder for polyester fiber production using recycled PET. Revista mexicana de ingeniería química, 13(1), 337-344.

Thomas, M. G., Abraham, E., Jyotishkumar, P., Maria, H. J., Pothen, L. A., Thomas, S. (2015). Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules, 81, 768–777.

Torres-Huerta, A., Domínguez-Crespo, M., Palma-Ramírez, D., Flores-Vela, A., Castellanos-Alvarez, E., Del Angel-López, D. (2018). Preparation and degradation study of HDPE/PLA polymer blends for packaging applications. Revista Mexicana De Ingeniería Química, 18(1), 251-271.

Turner Jones, A., Aizlewood, J. M., Beckett, D. R. (1964). Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie, 75(1), 134–158.

Varga, J. (2002). β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B, 41:4–6, 1121–1171.

Vieira, L. M. G., Santos, J. C. D., Panzera, T. H., Christoforo, A. L., Mano, V., Campos Rubio, J. C., Scarpa, F. (2018). Hybrid composites based on sisal fibers and silica nanoparticles. Polymer Composites, 39(1), 146-156.

Wang, H., Huang, L., Lu, Y. (2009). Preparation and characterization of micro- and nano-fibrils from jute. Fibers and Polymers, 10(4), 442–445.

How to Cite
Herrera-Zúñiga, L., González-Palma, M., Díaz-Godínez, G., Martínez-Carrera, D., Sánchez, C., & Díaz, R. (2020). Molecular docking of oxidases from Pleurotus ostreatus and the activity of those produced by ARS 3526 strain grown in both, submerged and solid-state fermentations. Revista Mexicana De Ingeniería Química, 20(1), 453-466.