Effect of silicon dots into coconut fibers on the nucleating capacity of β-crystals of polypropylene

  • M. del Angel-Monroy
  • V. Escobar-Barrios
  • M.G. Peña-Juarez
  • R. Camarena-Rangel
  • I. Montes-Zavala
  • J.A. Gonzalez-Calderon
  • E. Perez
Keywords: Coconut fiber, silicon dots, β-nucleating agent, crystallization, polypropylene


Three concentrations of sodium hydroxide (3, 5, and 7% based on a composition by weight) and 2 reaction times (1 and 4 h) were used to treat coconut fiber. According to the results, the inclusion of treated fiber in polymer influenced the melting temperature of the composite incremented it to 165°C, which is attributable to the a-crystal melting; however, the introduction of the untreated fiber interrupts the crystallinity sequence for a-crystallinity and favors the formation of the b-crystals. The X-ray diffraction analysis confirmed that pristine coconut fiber can be an efficient β-nucleating agent when it is used with no alkaline treatment, indicating that its b-nucleating capability is related to the presence of silicon dots on the fiber surface. In terms of mechanical behavior, the untreated fiber composites presented the highest value in storage modulus (4260 MPa) compared to pure polypropylene; and the presence of a higher content of β-crystals in the polymer matrix gave an improvement of 82%. The results suggest that a high formation of β-crystals in polypropylene matrices reinforced with coconut fiber occurs when a previous alkaline treatment is not used.


Anastacio-López, Z. S., Gonzalez-Calderon, J. A., Saldivar-Guerrero, R., Velasco-Santos, C., Martínez-Hernández, A. L., Fierro-González, J. C., Almendárez-Camarillo, A. (2019). Modification of graphene oxide to induce beta crystals in isotactic polypropylene. Journal of Materials Science, 54(1), 427-443. https://doi.org/10.1007/s10853-018-2866-3

Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Khaidir, R. E. M. (2018). Synthesis and structural properties of coconut husk as potential silica source. Results in Physics, 11, 1–4. https://doi.org/10.1016/j.rinp.2018.08.018

Bledzki, A. K., Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2), 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5

Bledzki, A. K., Mamun, A. A., Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. https://doi.org/10.1016/j.compscitech.2010.01.022

Diaz-Pedraza, A., Piñeros-Castro, Y., Ortega-Toro, R. (2020). Bi-layer materials based on thermoplastic corn starch, polylactic acid and modified polypropylene. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 323-331. https://doi.org/10.24275/rmiq/Alim1655

Ding, Q., Zhang, Z., Wang, C., Jiang, J., Li, G., Mai, K. (2013). The β-nucleating effect of wollastonite-filled isotactic polypropylene composites. Polymer Bulletin, 70(3), 919–938. https://doi.org/10.1007/s00289-012-0896-6

Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J. M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107, 323–331. https://doi.org/10.1016/j.jaap.2014.03.017

Etaati, A., Pather, S., Fang, Z., Wang, H. (2014). The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Composites Part B: Engineering, 62, 19–28. https://doi.org/10.1016/j.compositesb.2014.02.011

Fahlén, J., Salmén, L. (2003). Cross-sectional structure of the secondary wall of wood fibers as affected by processing. Journal of Materials Science, 38(1), 119–126. https://doi.org/10.1023/A:1021174118468

García-Cruz, H., Jaime-Fonseca, M., Von Borries-Medrano, E., Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 395-412. https://doi.org/10.24275/rmiq/Poly1529

Gil-López, D. L., Lois-Correa, J. A., Sánchez-Pardo, M. E., Domínguez-Crespo, M. A., Torres-Huerta, A. M., Rodríguez-Salazar, A. E., Orta-Guzmán, V. N. (2019). Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments. Industrial Crops and Products, 135, 159-169. https://doi.org/10.1016/j.indcrop.2019.04.042

Gonzalez-Calderon, J. A., Castrejon-Gonzalez, E. O., Medellin-Rodriguez, F. J., Stribeck, N., Almendarez-Camarillo, A. (2015). Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on b-crystal formation in an isotactic polypropylene (iPP) matrix. Journal of Materials Science, 50, 1457–1468. https://doi.org/10.1007/s10853-014-8706-1

Gonzalez-Calderon, J. A., Vallejo-Montesinos, J., Mata-Padilla, J. M., Pérez, E., Almendarez-Camarillo, A. (2015). Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. Journal of Materials Science, 50(24), 7998–8006. https://doi.org/10.1007/s10853-015-9365-6

Gou, J., Zhang, L., Li, C. (2020). A new method combining modification of montmorillonite and crystal regulation to enhance the mechanical properties of polypropylene. Polymer Testing, 82, 106236.


Gradys, A., Sajkiewicz, P., Minakov, A. A., Adamovsky, S., Schick, C., Hashimoto, T., Saijo, K. (2005). Crystallization of polypropylene at various cooling rates. Materials Science and Engineering: A, 413, 442–446. https://doi.org/10.1016/j.msea.2005.08.167

Hidalgo-Salazar, M. Á., Correa-Aguirre, J. P., Montalvo-Navarrete, J. M., Lopez-Rodriguez, D. F., Rojas-González, A. F. (2018). Recycled polypropylene-coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. In Thermosoftening Plastics. IntechOpen. http://dx.doi.org/10.5772/intechopen.81635

Hosokawa, M. N., Darros, A. B., Moris, V. A. D. S., Paiva, J. M. F. D. (2017). Polyhydroxybutyrate composites with random mats of sisal and coconut fibers. Materials Research, 20(1), 279-290. https://doi.org/10.1590/1980-5373-MR-2016-0254

Huang, L., Wu, Q., Wang, Q., Wolcott, M. (2020). Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 130, 105765. https://doi.org/10.1016/j.compositesa.2020.105765

Jacob, M., Thomas, S., Varughese, K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7–8), 955–965. https://doi.org/10.1016/S0266-3538(03)00261-6

Jahan, M. S., Saeed, A., He, Z., Ni, Y. (2011). Jute as raw material for the preparation of microcrystalline cellulose. Cellulose, 18(2), 451–459. https://doi.org/10.1007/s10570-010-9481-z

Li, J., He, W., Long, L., Zhang, K., Xiang, Y., Zhang, M., Yin, X., Yu, J. (2018). A novel silica-based nucleating agent for polypropylene: Preparation, characterization, and application. Journal of Vinyl and Additive Technology, 24(1), 58–67. https://doi.org/10.1002/vnl.21525

Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., de Muniz, G. B., Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate polymers, 102, 576-583. https://doi.org/10.1016/j.carbpol.2013.11.020

Luo, S., Zheng, Y., Zheng, Z., Wu, H., Shen, J., Guo, S. (2019). Competitive growth of α-and β-transcrystallinity in isotactic polypropylene induced by the multilayered distribution of α-nucleating agents: Toward high mechanical performances. Chemical Engineering Journal, 355, 710-720. https://doi.org/10.1016/j.cej.2018.08.162

Mishra, L., Basu, G. (2020). Coconut fibre: its structure, properties and applications. In Handbook of Natural Fibres (pp. 231-255). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818398-4.00010-4

Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., Tripathy, S. S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites science and technology, 63(10), 1377-1385. https://doi.org/10.1016/S0266-3538(03)00084-8

Morán, J. I., Alvarez, V. A., Cyras, V. P., Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149–159. https://doi.org/10.1007/s10570-007-9145-9

Nayak, S. K., Mohanty, S., Samal, S. K. (2009). Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Materials Science and Engineering A, 523(1–2), 32–38. https://doi.org/10.1016/j.msea.2009.06.020

Neethirajan, S., Gordon, R., Wang, L. (2009). Potential of silica bodies (phytoliths) for nanotechnology. Trends in Biotechnology, 27(8), 461–467. https://doi.org/10.1016/j.tibtech.2009.05.002

Papageorgiou, D. G., Chrissafis, K., Bikiaris, D. N. (2015). β-Nucleated Polypropylene: Processing, Properties and Nanocomposites. Polymer Reviews, 55(4), 596–629. https://doi.org/10.1080/15583724.2015.1019136

Pereira, P. H. F., De Freitas Rosa, M., Cioffi, M. O. H., De Carvalho Benini, K. C. C., Milanese, A. C., Voorwald, H. J. C., Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: A review. Polimeros, 25(1), 9–22. https://doi.org/10.1590/0104-1428.1722

Poletto, M. (2017). Mechanical, dynamic mechanical and morphological properties of composites based on recycled polystyrene filled with wood flour wastes. Maderas. Ciencia y tecnología, 19(4), 433-442. http://dx.doi.org/10.4067/S0718-221X2017005000301

Raveendran, K., Ganesh, A., Khilar, K. C. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel, 75(8), 987–998. https://doi.org/10.1016/0016-2361(96)00030-0

de Rodriguez, N. L. G., Thielemans, W., Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261-270. https://doi.org/10.1007/s10570-005-9039-7

Sanjuan-Raygoza, R. J., Jasso-Gastinel, C. F. (2009). Effect of waste agave fiber on the reinforcing of virgin or recycled polypropylene. Revista Mexicana de Ingeniería Química, 8(3), 319-327.

Satyanarayana, K. G., Kulkarni, A. G., Rohatgi, P. K. (1981). Structure and properties of coir fibres. Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences, 4(4), 419–436. https://doi.org/10.1007/BF02896344

Tan, I. A. W., Ahmad, A. L., Hameed, B. H. (2008). Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials, 153(1–2), 709–717. https://doi.org/10.1016/j.jhazmat.2007.09.014

Tapia-Picazo, J.C., García-Chávez, A., Gonzalez-Nuñez, R., Bonilla-Petriciolet, A., Luna-Bárcenas, G., Champión-Coria, A., Alvarez-Castillo, A. (2014). Performance of a modified extruder for polyester fiber production using recycled PET. Revista mexicana de ingeniería química, 13(1), 337-344.

Thomas, M. G., Abraham, E., Jyotishkumar, P., Maria, H. J., Pothen, L. A., Thomas, S. (2015). Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules, 81, 768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

Torres-Huerta, A., Domínguez-Crespo, M., Palma-Ramírez, D., Flores-Vela, A., Castellanos-Alvarez, E., Del Angel-López, D. (2018). Preparation and degradation study of HDPE/PLA polymer blends for packaging applications. Revista Mexicana De Ingeniería Química, 18(1), 251-271. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Torres

Turner Jones, A., Aizlewood, J. M., Beckett, D. R. (1964). Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie, 75(1), 134–158. https://doi.org/10.1002/macp.1964.020750113

Varga, J. (2002). β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B, 41:4–6, 1121–1171. https://doi.org/10.1081/MB-120013089

Vieira, L. M. G., Santos, J. C. D., Panzera, T. H., Christoforo, A. L., Mano, V., Campos Rubio, J. C., Scarpa, F. (2018). Hybrid composites based on sisal fibers and silica nanoparticles. Polymer Composites, 39(1), 146-156. https://doi.org/10.1002/pc.23915

Wang, H., Huang, L., Lu, Y. (2009). Preparation and characterization of micro- and nano-fibrils from jute. Fibers and Polymers, 10(4), 442–445. https://doi.org/10.1007/s12221-009-0442-9

How to Cite
del Angel-Monroy, M., Escobar-Barrios, V., Peña-Juarez, M., Camarena-Rangel, R., Montes-Zavala, I., Gonzalez-Calderon, J., & Perez, E. (2020). Effect of silicon dots into coconut fibers on the nucleating capacity of β-crystals of polypropylene. Revista Mexicana De Ingeniería Química, 20(1), 479-492. https://doi.org/10.24275/rmiq/poly2118