Application of modified vegetable oil for improvement of biodegradable materials based on thermoplastic starch and polylactic acid

  • M. Bohórquez-Ayala
  • D. Rojano-Quiroz
  • R. González-Cuello
  • L. García-Zapateiro
  • R. Ortega-Toro
Keywords: Dioscorea rotundata, epoxidation, interface, physicochemical properties

Abstract

Currently, it is a challenge for academia and industry to develop materials capable of replacing conventional petroleum-derived polymers. The objective of the present study was to evaluate the physicochemical and morphological properties of biodegradable materials obtained from thermoplastic yam starch (TPS), and polylactic acid (PLA) improved with the addition of epoxidized sesame oil (ESO). The blends were made by extrusion, and the films were made by compression moulding. The interaction with water, mechanical properties and structural properties were studied. As a result, the addition the ESO on the TPS / PLA polymeric matrix caused a decrease in moisture content, surface wettability and lower permeability to water vapour. Furthermore, when adding ESO at 3%, elastic modulus and the tensile strength increased approximately double and the deformation capacity for the mixtures without ESO by more than 70%. Regarding structural properties, the addition of ESO promoted the formation of a TPS / PLA interface without marked separation and smoother surfaces. The materials obtained show promising properties for the development of food packaging with low moisture content.

References

Acoplásticos. (2017). Asociación Colombiana de Industrias Plásticas (Acoplásticos). Obtenido de https://www.acoplasticos.org/index.php/mnu-noti/135-ns-170809
Alam, J., Alam, M., Mojan, R., Abduljaleel, Z., & Arockiasamy, L. (2014). MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. International Journal of Molecular Sciences, 11, 19924-19937. doi:10.3390/ijms151119924
ASTM. (1995). Standard test methods for water vapor transmission of materials. Standards designations: E96-E95. In Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials.
ASTM. (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In Annual book of American standard testing methods. Philadelphia, PA: American Society for Testing and Materials.
Balart, J.F., Fombuena, V., Fenollar, O., Boronat, T., Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. https://doi.org/10.1016/j.compositesb.2015.09.063.
Belhassen, R., Vilaseca, F., Mutjé, P., & Boufi, S. (2014). Thermoplasticized starch modified by reactive blending with epoxidized soybean oil. Industrial Crops and Products, 261-267. doi:https://doi.org/10.1016/j.indcrop.2013.12.039
Boyacá, L., & Beltrán, Á. (2010). Producción de epóxido de soya con ácido peracético generado in situ mediante catálisis homogénea. Ingeniería e Investigación, 30, 136-140. Retrieved from http://www.scielo.org.co/pdf/iei/v30n1/v30n1a23.pdf
Carbonell-Verdu, A., Samper, D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:https://doi.org/10.1016/j.indcrop.2017.04.050
Castle, L., Bradley, E., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 22, 604-610. doi:https://doi.org/10.1016/j.tifs.2011.01.002
Dammak, M., Fourati, Y., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., & Boufi, S. (2020). Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 144, 112-120. doi:https://doi.org/10.1016/j.indcrop.2019.112061
Datta, D., & Halder, G. (2019). Effect of media on degradability, physico-mechanical and optical properties of synthesized polyolefinic and PLA film in comparison with casted potato/corn starch biofilm. Process Safety and Environmental Protection, 39-62. doi:https://doi.org/10.1016/j.psep.2019.02.002
Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S., & Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148-154. doi:https://doi.org/10.1016/j.carbpol.2014.03.063
Ferri, M., Samper, M., García-Sanoguera, D., Reig, M., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 11, 5356-5366. doi:https://doi.org/10.1007/s10853-016-9838-2
Florez, J., Fazeli, M., & Simão, R. (2019). Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. International Journal of Biological Macromolecules, 123, 609-621. doi:https://doi.org/10.1016/j.ijbiomac.2018.11.070
García-Cruz, H., Jaime-Fonseca, M., Borries-Medrano, E., & Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic polymer. Revista Mexicana de Ingeniería Química, 19, 395-412. doi:https://doi.org/10.24275/rmiq/Poly1529
Ge, X., Yu, L., Liu, Z., Liu, H., Chen, Y., & Chen, L. (15 de March de 2019). Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film. International Journal of Biological Macromolecules, 125, 370-375. doi:https://doi.org/10.1016/j.ijbiomac.2018.11.239
Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M., & Khaksar, R. (2013). Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers, 98, 1117-1126. doi:https://doi.org/10.1016/j.carbpol.2013.07.026
Haq, M., Hasnain, A., Jafri, F., Akbar, M., & Khan, A. (2016). Characterization of edible gum cordia film: Effects of beeswax. LWT - Food Science and Technology, 68, 674-680. doi:https://doi.org/10.1016/j.lwt.2016.01.011
Ingrao, C., Tricase, C., Cholewa-Wójcik, A., Kawecka, A., Rana, R., & Siracusa, V. (2015). Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Science of The Total Environment, 537, 385-398. doi:https://doi.org/10.1016/j.scitotenv.2015.08.023
Juansang, J., Puncha-arnon, S., Uttapap, D., Puttanlek, C., Rungsardthong, V., & Watcharatewinkul, Y. (2017). Concentration of plasticizers applied during heatmoisture treatment affects properties of the modified canna starch. Food Chemistry, 221, 1587-1594. doi:https://doi.org/10.1016/j.foodchem.2016.10.134
Jullanun, P., & Yoksan, R. (2020). Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 88, 106-122. doi:https://doi.org/10.1016/j.polymertesting.2020.106522
Martins da Costa, J., Lima, K., da Silva Ramos, A., & Teixeira-Costa, B. (2020). Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon, 4, 37-42. doi:https://doi.org/10.1016/j.heliyon.2020.e03718
Nordin, N., Othman, S., Rashi, S., & Basha, R. (2020). Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocolloids, 106(105884). doi:https://doi.org/10.1016/j.foodhyd.2020.105884
Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt, A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:https://doi.org/10.1016/j.fpsl.2015.04.001
Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical propertiesof corn starchfilms. Food Hydrocolloids, 66-75. doi:https://doi.org/10.1016/j.foodhyd.2013.11.011
Ortega-Toro, R., Muñoz, A., Talens, P., & Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 56, 9-19. doi:https://doi.org/10.1016/j.foodhyd.2015.11.029
Plastics–the Facts. (2018). An analysis of European plastics. PlacticsEurope. Obtenido de https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf
Râpă, M., Miteluţ, A., Tănase, E., Grosu, E., Popescu, P., Popa, M., . . . Vasile, C. (2016). Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 112-121. doi:https://doi.org/10.1016/j.compositesb.2016.07.016
Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (s.f.). Effect of plasticizers on thermal and physical properties of compression-moulded poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] films. Polymer Testing, 56, 45-53. doi:https://doi.org/10.1016/j.polymertesting.2016.09.022
Rodriguez-Lora, M., Ciro-Velásquez, H., Salcedo-Mendoza, J., & Serna-Fadul, T. (2020). Development and characterization of a dehydrated mixture based on pumpkin flour (Cucurbita maxima) incorporating modified starch of yam (D. alata cv. Diamante 22) with potential application for instantaneous soups. Revista Mexicana de Ingenieria Química, 19, 1011-1025. doi:https://doi.org/10.24275/rmiq/Alim1031
Tabasum, S., Younas, M., Ansab, M., Majeed, I., Majeed, M., Noreen, A., . . . Mahmood, K. (2019). A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. International Journal of Biological Macromolecules, 122, 969-996. doi:https://doi.org/10.1016/j.ijbiomac.2018.10.092
Villabona-Ortíz, A., Tejada-Tovar, C., & Ortega-Toro, R. (2020). Comparative study of theuse of starch from agro-industrial materialsin the coagulation-flocculation process. Revista Mexicana de Ingenieria Química, 19, 593-601. doi:https://doi.org/10.24275/rmiq/Alim1540
Villabona-Ortiz, A., Tejada-Tovar, C., & Ortega-Toro, R. (2020). Physicochemical properties of biodegradable films of spine yam (Dioscorea rotundata), hydroxypropylmethylcellulose and clove oil (Syzygium aromaticum). Revista Mexicana de Ingeniería Química, 19, 315-322. doi:https://doi.org/10.24275/rmiq/Alim1540
Vogler, E. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74, 69-117. doi:https://doi.org/10.1016/S0001-8686(97)00040-7
Weerapoprasi, C., & Prachayawarakorn, J. (2019). Characterization and properties of biodegradable thermoplastic grafted starch films by different contents of methacrylic acid. International Journal of Biological Macromolecules, 123, 657-663. doi:https://doi.org/10.1016/j.ijbiomac.2018.11.083
Xing, C., & Matuana, L. (2016). Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. Journal of Applied Polymer Science, 12, 8.
Zhou, X., Yang, R., Wang, B., & Chen, K. (2019). Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydrate Polymers, 222(114912). doi:https://doi.org/10.1016/j.carbpol.2019.05.042
Zuleta, E., Mantilla, M., Avendaño, I., & Diaz, L. (2013). Epoxidación de oleína de palma con ácido peroxiacético formado in situ. Biotecnología en el Sector Agropecuario y Agroindustrial, 11, 235-244. Retrieved from http://www.scielo.org.co/pdf/bsaa/v11n1/v11n1a27.pdf
Published
2020-12-11
How to Cite
Bohórquez-Ayala, M., Rojano-Quiroz, D., González-Cuello, R., García-Zapateiro, L., & Ortega-Toro, R. (2020). Application of modified vegetable oil for improvement of biodegradable materials based on thermoplastic starch and polylactic acid. Revista Mexicana De Ingeniería Química, 20(1), 423-433. https://doi.org/10.24275/rmiq/Poly2164

Most read articles by the same author(s)