Application of Fourier Transform Infrared Spectroscopy (FTIR) in combination with Attenuated Total Reflection (ATR) for rapid analysis of the tequila production process
Abstract
The manufacturing process of tequila made of Agave tequilana Weber var. azul consists of several important process stages such as milling, cooking, fermentation, distillation, and aging. The purpose of this contribution was to characterize five of the most important stages of the tequila production process in a pilot plant by using FTIR-ATR spectroscopy. The results showed that FTIR-ATR spectra of raw juices in the range 4000 and 700 cm-1, were mostly composed of absorption peaks associated with water and fructose. The spectra of cooked juices showed the thermal hydrolysis of the fructans to fructose in the interval between 1200 and 800 cm-1. The FTIR-ATR spectra of the samples fermented showed a gradual sequence transforming fructose peaks to ethanol peaks during the interval time from 0 to 48 h at 35°C. The spectra obtained from the distillation showed that the intensity of the peaks was a function of the concentration of ethanol in the product distillates. The evolution of the aging of the “tequila blanco” in an oak barrel was monitored for 60 days. The results showed that the region between 1300 and 900 cm-1 of the FTIR-ATR spectra was associated with the aging process in the oak barrel.
References
Arellano, M., Pelayo, C., Ramírez, J. and Rodriguez, I. (2008). Characterization of kinetic parameters and the formation of volatile compounds during the tequila fermentation by wild yeasts isolated from agave juice. Journal of Industrial Microbiology and Biotechnology, 35, 835-841. https://doi.org/10.1007/s10295-008-0355-4.
Arrieta-Almario, A., Mendoza-Fandiño, J. and Palencia-Luna, M. (2019). Composite material elaborated from conducting biopolymer cassava starch and polyaniline. Revista Mexicana De Ingeniería Química, 19, 707-715.
https://doi.org/10.24275/rmiq/Mat765.
Arrizon, J., Fiore, C., Acosta, G., Romano, P. and Gschaedler, A. (2006). Fermentation behavior and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations. Antonie Van Leeuwenhoek, 89, 181-189. https://doi.org/10.1007/s10482-005-9022-1.
Baishya, R., Chatterjee, R., Banerjee, S., and Hasnain, M. (2021). Application of FESEM and FTIR for evaluation of Staphylococcus aureus biofilms grown on chitin and polycarbonate membrane. Revista Mexicana De Ingeniería Química, 20, 509-519. https://doi.org/10.24275/rmiq/Mat2175
Barbosa-García, O., Ramos-Ortíz, G., Maldonado, J. L., Pichardo-Molina, J. L., Meneses-Nava, M. A., Landgrave, J. E. A. and Cervantes-Martínez, J. (2007). UV–vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, 129-134. https://doi.org/10.1016/j.saa.2006.02.033.
Belchior, V., Gonzalvez, Botelho B., Olivera, L. S. and Franca, A. S. (2019). Attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) and chemometrics for discrimination of espresso coffees with different sensory characteristics. Food Chemistry, 273, 178-185. https://doi.org/10.1016/j.foodchem.2017.12.026.
Cadet, F., Robert, C. and Offmann, B. (1997). Simultaneous determination of sugars by multivariate analysis applied to mid-infrared spectra of biological samples. Applied spectroscopy, 51, 369-375. https://doi.org/10.1366/0003702971940224
Cassani, L., Santos, M., Gerbino, E., Moreira, M. R. and Gómez-Zavaglia, A. (2018). A combined approach of infrared spectroscopy and multivariative analysis for the simultaneous determination of sugars and fructans in strawberry juices during storage. Journal of Food Science, 83, 631-638. https://doi.org/10.1111/1750-3841.13994
Coates, J. (2000). Interpretation of infrared spectra, a practical approach, Encyclopedia of analytical chemistry, R. A. Meyers (editor), John Wiley and son Ltd, Chichester, 10815-10837.
Contreras U., Barbosa-García, O., Pichardo-Molina, J. L., Ramos-Ortíz, G., Maldonado, J. L., Meneses-Nava, M. A., Ornelas-Soto, N. E. and López-de-alba, P. L. (2010). Screening method for identification of adulterate and fake tequilas by using UV–VIS spectroscopy and chemometrics. Food Research International, 43, 2356-2362. https://doi.org/10.1016/j.foodres.2010.09.001.
Di Egidio, V., Sinelli, N., Giovanelli G., Moles, A. and Casiraghi, E. (2010). NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Europe Food Research and Technology, 230, 947-955.
https://doi.org/10.1007/s00217-010-1227-5.
Frausto-Reyes, C., Medina-Gutiérrez, C., Sato-Berro, R. and Sahagún, L. R. (2005). Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61, 2657-2662. https://doi.org/10.1016/j.saa.2004.10.008.
Gómez-Montaño, F., Orduña-Díaz, A., Avelino-Flores, M., Avelino-Flores, F., and Reyes-Betanzo, C. (2021). Specific optical-based biosensor to rapid detection of Salmonella Typhimurium using FTIR: evaluation in natural orange juice, as an application in food products. Revista Mexicana De Ingeniería Química, 20, Bio2538. https://doi.org/10.24275/rmiq/Bio2538
Grube, M., Bekers, M., Upite, D. and Kaminska, E. (2002). Infrared spectra of some fructans. Spectroscopy, 16, 289-296. https://doi.org/10.1155/2002/637587.
Hind, A. R., Bhargava, S. K. and McKinnon, A. (2001). At the solid/liquid interface: FTIR/ATR: the tool of choice. Advances in Colloids and Interface Science, 93, 91-114. https://doi.org/10.1016/S0001-8686(00)00079-8.
Karoui, R., Downey, G. and Blecker, C. (2010). Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships - A review. Chemical Reviews, 110, 6144-6168. https://doi.org/10.1021/cr100090k.
Lachenmeier, D. W. (2007). Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chemistry, 101, 825-832. https://doi.org/10.1016/j.foodchem.2005.12.032.
Lachenmeier, D. W., Richling, E., López, M. G., Frank, W. and Schreier, P. (2005). Multivariate analysis of FTIR and ion chromatographic data for the quality control of tequila. Journal of Agricultural and Food Chemistry, 53, 2151-2157. https://doi.org/10.1021/jf048637f.
Lee, L. C., Liong, C. Y. and Jemain, A. A. (2017). A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum. Chemometrics and Intelligent Laboratory Systems, 163, 64-75. https://doi.org/10.1016/j.chemolab.2017.02.008.
Leopold, L. F., Leopold, N., Diehl, H. A. and Socaciu, C. (2011). Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. Spectroscopy, 26, 93-104. https://doi.org/10.3233/SPE-2011-0529.
Llario, R., Iñón, F. A., Garrigues, S. and de la Guardia, M. (2006). Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy. Talanta, 69, 469-480. https://doi.org/10.1016/j.talanta.2005.10.016.
Lohumi, S., Lee, S., Lee, H. and Cho, B. K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 46, 85-98. https://doi.org/10.1016/j.tifs.2015.08.003.
López, M. G., Mancilla-Margalli, N. A. and Mendoza-Díaz, G. (2003). Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51, 7835-7840. https://doi.org/10.1021/jf030383v.
López Ramírez, J. E., Martín del Campo, S. T., Escalona-Buendía, H., García-Fajardo, J. and Estarrón-Espinosa, M. (2013). Physicochemical quality of tequila during barrel maturation. A preliminary study. CyTA-Journal of Food, 11, 223-233. https://doi.org/10.1080/19476337.2012.727033.
Martín del Campo, S. T., Gómez Hernández, H. E., Gutiérrez, H., Escalona, H., Estarrón, M. and Cosío Ramírez, R. (2011). Volatile composition of tequila. Evaluation of three extraction methods. CyTA – Journal of Food, 9, 152–159. https://doi.org/10.1080/19476337.2010.499569.
Mellado-Mojica, E. and Lopez, M. G. (2012). Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. Journal of Agricultural and Food Chemistry, 60, 11704-11713. https://doi.org/10.1021/jf303332n.
Muñoz-Muñoz, A.C., Grenier, A.C., Gutiérrez-Pulido, H. and Cervantes-Martínez, J. (2008). Development and validation of a high-performance liquid chromatography-diode array detection method for the determination of aging markers in tequila. Journal of Chromatography A, 1213, 218–223. https://doi.org/10.1016/j.chroma.2008.10.018.
Muñoz-Rodríguez, D., Wrobel, K. and Wrobel, K. (2005). Determination of aldehydes in tequila by high-performance liquid chromatography with 2,4-dinitrophenylhydrazine derivatization. European Food Research and Technology, 221, 798-802. https://doi.org/10.1007/s00217-005-0038-6.
Paradkar, M. M. and Irudayaraj, J. (2002). Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78, 261-266. https://doi.org/10.1016/S0308-8146(02)00116-4.
Prado Jaramillo, N., Estarrón-Espinosa, M., Escalona-Buendía, H., Cosío-Ramírez, R. and Martín-del-Campo, S. T. (2015). Volatile compounds generation during different stages of the Tequila production process. A preliminary study. LWT-Food Science and Technology, 61, 471-483. https://doi.org/10.1016/j.lwt.2014.11.042.
Prado-Ramírez, R., González-Alvarez, V., Pelayo-Ortiz, C., Casillas, N., Estarrón, M. and Gómez-Hernández, H. E. (2005). The role of distillation on the quality of tequila. International Journal of Food Science and Technology, 40, 701-708. https://doi.org/10.1111/j.1365-2621.2005.00983.x.
Rodríguez-Garay, B., Gutiérrez-Mora, A., Arrizon-Gaviño, J. P., Loera-Quezada, M. M., Flores-Berrios, E. P., Rincón-Enríquez, G., Quiñones-Aguilar, E. E. and Qui-Zapata, J. A. (2015). La materia prima: Agave tequilana Weber var. Azul. In: Ciencia y tecnología del tequila: avances y perspectivas, (A. C. Gschaedler-Mathis, B. Rodríguez-Garay, R. Prado-Ramírez and J. L. Flores-Montaño eds.), Pp. 17-53. CIATEJ, Guadalajara, Jalisco, México.
Rodríguez-Saona, L. E. and Allendorf, M. E. (2011). Use of FTIR for rapid authentication and detection of adulteration of food. Annual Review of Food Science and Technology, 2, 467-483. https://doi.org/10.1146/annurev-food-022510-133750.
Silva, S. D., Feliciano, R. P., Boas, L. V. and Bronze, M. R. (2014). Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chemistry, 150, 489-493.
https://doi.org/10.1016/j.foodchem.2013.11.028.
Smyth, H. and Cozzolino, D. (2013). Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: advantages and limitations. Chemical Reviews, 113, 1429-1440. https://doi.org/10.1021/cr300076c.
Stuart, B. (2004). Infrared Spectroscopy: Fundamentals and applications. Wiley, Chichester, England. DOI:10.1002/0470011149.
Vallejo-Cordova, B., González-Córdova, A. F. and Estrada-Montoya, C. M. (2004). Tequila volatile characterization and ethyl ester determination by solid-phase microextraction gas chromatography/mass spectrometry analysis. Journal of Agricultural Food Chemistry, 52, 5567–5571. https://doi.org/10.1021/jf0499119.
Vázquez-Vuelvas, O. F., Chávez-Camacho, F. A., Meza-Velázquez, J. A., Mendez-Merino, E., Ríos-Licea, M. M. and Contreras-Esquivel, J. C. (2020). A comparative FTIR study for supplemented agavin as functional food. Food Hydrocolloids, 103, 105642. https://doi.org/10.1016/j.foodhyd.2020.105642.
Waleckx, E., Gschaedler, A., Colonna-Ceccaldi, B. and Monsan, P. (2008). Hydrolysis of fructans from Agave tequilana Weber var. azul during the cooking step in a traditional tequila elaboration process. Food Chemistry, 108, 40-48. https://doi.org/10.1016/j.foodchem.2007.10.028.
Wu, Z., Xu, E., Long, J., Zhang, Y., Wang, F., Xu, X., Jin, Z. and Jiao, A. (2015). Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control, 50, 405-412.
https://doi.org/10.1016/j.foodcont.2014.09.028
Zeinalipour-Yazdi, C. D. and Loizidou, E. Z. (2021). An experimental FTIR-ATR on computational study of H-bonding in ethanol/water mixture. Chemical Physics, 550, 11295. https://doi.org/10.1016/j.chemphys.2021.111295

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.