Influence of the feed composition and the spray drying process on the quality of a powdered mixture of blackberry (Rubus glaucus Benth)

  • M. Cortes-Rodriguez Programa de Ingeniería de Alimentos. Universidad Nacional de Colombia.
  • J.H. Gil-González Programa de Ingeniería de Alimentos. Universidad Nacional de Colombia.
  • R. Ortega-Toro Professor Universidad de Cartagena, Colombia
Keywords: Rubus glaucus Benth, active compounds, spray drying, physicochemical stability, antioxidant capacity

Abstract

The Castile blackberry (Rubus glaucus Benth) is a fruit rich in active components, which is framed within the context of functional foods, to provide well-being to the human being. The objective of the research was to evaluate the effect of the feed composition and the spray drying process (SD) on the quality of the blackberry powdered mixture (BPM). The response surface methodology was used with a central composite face-centered design (α=1), considering the following independent variables: inlet air temperature (IAT) (140 - 160 °C), outlet air temperature (OAT) (80 - 90 °C), atomizer disk speed (ADS) (20000 - 24000 rpm) and maltodextrin (MD) (5 – 9 %). The dependent variables were water activity (aw), humidity (Xw), solubility (S), wettability (We), hygroscopicity (H), angle of repose (AR), particle size (Span), total phenols (TP), antioxidant activity (ABTS and DPPH), anthocyanins (A), ellagic acid (EA) and product yield (Y). In general, We is the most critical variable in BPM, being statistically affected by most of the independent variables and by their linear and quadratic interactions. On the other hand, the experimental optimization of multiple responses defined the independent variables as IAT (159.3 °C), OAT (89.3 °C), ADS (24000 rpm), MD (5.5  %), and the dependent variables as aw (0.166±0.002), Xw (7.10±0.05 %), S (88.01±0.17 %), We (54.4±1.3 min), AR (7.4±3.7°), Span (1.69±1.04), TP (4513.1±23.5 mg AGE/100g dry base (db), ABTS (4012.7±34.0 mg TE/100g db), DPPH (5359.4±39.1 mg TE/100g db), A (281.2±29.4 mg C3G/100g db), EA (2653.0±155.0 mg/100g db) and Y (46.4±13.2 %). The spray drying (SD) process provides effective protection for the active compounds of the blackberry extract. In addition, it guarantees physicochemical stability for storage.

References

Albarrán-Mondragón, F., Orozco-Villafuerte, J., Mulia-Rodríguez, J., Hernández-Jaimes, C., Cruz-Sosa, F., and Buendía-González, L. (2022). Total phenolic content in fruits and in in vitro cultures of Bromelia karatas L. Revista Mexicana de Ingeniería Quimica 21(1), Bio2685. https://doi.org/10.24275/rmiq/Bio2685

Al-Maqtari, Q. A., Mohammed, J. K., Mahdi, A. A., Al-Ansi, W., Zhang, M., Al-Adeeb, A., and Yao, W. (2021). Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. International Journal of Biological Macromolecules 187, 939-954. https://doi.org/10.1016/j.ijbiomac.2021.07.180

Arabpoor, B., Yousefi, S., Weisany, W., and Ghasemlou, M. (2021). Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids 111, 106394. https://doi.org/10.1016/j.foodhyd.2020.106394

Bhatta, S., Stevanovic, T., and Ratti, C. (2020) Freeze-drying of maple syrup: Efficient protocol formulation and evaluation of powder physicochemical properties. Drying Technology 38, 9, 1138-1150. https://doi.org/10.1080/07373937.2019.1616751

Balci-torun, F., and Ozdemir, F. (2021). Encapsulation of strawberry flavour and physicochemical characterization of the encapsulated powders. Powder Technology 380, 602–612. https://doi.org/10.1016/j.powtec.2020.11.060

Bastías-Montes, J. M., Choque-Chávez, M. C., Alarcón-Enos, J., Quevedo-León, R., Muñoz-Fariña, O., and Vidal-San-Martín, C. (2018). Effect of spray drying at 150, 160, and 170 °C on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chilean Journal of Agricultural Research 79, 144- 152. http://dx.doi.org/10.4067/S0718-58392019000100144

Colín-Cruz, M. A., Pimentel-González, D. J., Carrillo-Navas, H., Alvarez-Ramírez, J., and Guadarrama-Lezama, A. Y. (2019). Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. Food Science and Technology 110, 94–101. https://doi.org/10.1016/j.lwt.2019.04.064

Correâ-Filho, L. C., Lourenço, M. M., Moldaõ-Martins, M., and Alves, V. D. (2019). Microencapsulation of β-Carotene by spray drying: Effect of wall material concentration and drying inlet temperature. Journal of Agricultural and Food Chemistry 2019, 8914852. https://doi.org/10.1155/2019/8914852

da Silva, D. F., Itoda, C., Rosa, C. I. L. F., Vital, A. C. P., Yamamoto, L. N., Yamamoto, L. Y., and Matumoto-Pintro, P. T. (2018). Effects of blackberries (Rupus sp.; cv. Xavante) processing on its physicochemical properties, phenolic contents and antioxidant activity. Food Science and Technology 55, 11, 4642-464. https://doi.org/10.1007/s13197-018-3405-6

Díaz, D. I., Beristain, C. I., Azure, E., Luna, G., and Jimenez, M. (2015). Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Journal of Microencapsulation 32, 3, 247–254. https://doi.org/10.3109/02652048.2015.1010458

Farías-Cervantes, V. S., Salinas-Moreno, Y., Chávez-Rodríguez, A., Luna-Solano, G., Medrano-Roldan, H., and Andrade-González, I. (2020). Stickiness and agglomeration of blackberry and raspberry spray dried juices using agave fructans and maltodextrin as carrier agents. Czech Journal of Food Science 38, 4, 229–236. https://doi.org/10.17221/350/2018-CJFS

Farias-Cervantes, V. S., Chávez-Rodríguez, A., García-Salcedo, P. A., García-López, P. M., Casas-Solís, J., and Andrade-González, I. (2018). Antimicrobial effect and in vitro release of anthocyanins from berries and Roselle obtained via microencapsulation by spray drying. Journal of Food Processing and Preservation, 42(10), 1–8. https://doi.org/10.1111/jfpp.13713

Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., and de Aguirre, J. M. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology 47, 6, 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x

Ferrari, C. C., Germer, S. P. M., and de Aguirre, J. M. (2012). Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology 30, 2, 154–163. https://doi.org/10.1080/07373937.2011.628429

Ferreira Nogueira, G., Matta Fakhouri, F., and Augustus de Oliveira, R. (2018). Microencapsulation of blackberry pulp with arrowroot starch and gum arabic mixture by spray drying. Journal of Microencapsulation 35, 5, 482–493. https://doi.org/10.1080/02652048.2018.1538264

Franceschinis, L., Salvatori, D. M., Sosa, N., and Schebor, C. (2014). Physical and functional properties of blackberry freeze- and spray-dried powders. Drying Technology 32, 197–207. https://doi.org/10.1080/07373937.2013.814664

Gagneten, M., Cor, R., Gómez, M., Sozzi, A., and Leiva, G. (2019). Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technology 342, 1008–1015. https://doi.org/10.1016/j.powtec.2018.09.048

Gonçalves da Rosa, C., Dellinghausen Borges, C., Zambiazi, R., Kuhn, J., Rickes da Luz, Z., Döring Krumreich, F., Benvenutti, E., and Ramos Nunes, M. (2014). Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). Food Science and Technology 58, 527-533. http://dx.doi.org/10.1016/j.lwt.2014.03.042

González, I. (2016). Effect of spray drying temperature and agave fructans concentration as carrier agent on the quality properties of blackberry powder. International Journal of Food Engineering 12, 5, 451–459. https://doi.org/10.1515/ijfe-2015-0287

Jafari, S. M., Arpagaus, C., Cerqueira, M. A., and Samborska, K. (2021). Nano spray drying of food ingredients; materials, processing and applications. Trends Food Science and Technology 109, 632-646. https://doi.org/10.1016/j.tifs.2021.01.061

Khalifa, I., Li, M., Mamet, T., and Li, C. (2019). Maltodextrin or gum arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience 31, 100445. https://doi.org/10.1016/j.fbio.2019.100445

Laaksonen, O., Mäkilä, L., Jokinen, M., Metz, T., Kallio, H., and Yang, B. (2020). Impact of storage on sensory quality of blackcurrant juices prepared with or without enzymatic treatment at industrial scale. European Journal of Food Science and Technology 246, 12, 2611-2620. https://doi.org/10.1007/s00217-020-03601-0

Liu, W., Midya, J., Kappl, M., Butt, H. J., and Nikoubashman, A. (2019). Segregation in drying binary colloidal droplets. ACS Nano 13, 5, 4972-4979. https://doi.org/10.1021/acsnano.9b00459

Machado, A. P., Rezende, C. A., Rodrigues, R. A., Barbero, G. F., Rosa, P. T., and Martínez, J. (2018). Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technology 340, 553–562. https://doi.org/10.1016/j.powtec.2018.09.063

Madrigal‐Gamboa, V., Jiménez‐Arias, J., Hidalgo, O., Quesada, S., Pérez, A. M., and Azofeifa, G. (2021). Membrane processing effect of blackberry (Rubus adenotrichos) on cytotoxic and pro‐apoptotic activities against cancer cell lines. Journal of Food Processes and Preservation 45, e15575. https://doi.org/10.1111/jfpp.15575

Majumder, P., and Annegowda, H. V. (2021). Fruit and vegetable by-products: novel ingredients for a sustainable society. Valorization of Agri-Food Wastes and By-Products, 133-156. https://doi.org/10.1016/B978-0-12-824044-1.00006-4

Makinistian, F. G., Gallo, L., Sette, P., Salvatori, D., and Bucalá, V. (2020). Nutraceutical tablets from maqui berry (Aristotelia chilensis) spray-dried powders with high antioxidant levels. Drying Technology 38, 9, 1231–1242. https://doi.org/10.1080/07373937.2019.1629589

Martínez-Preciado, A., Silva-Jara, J., Flores-Nuño, B., Michel, C., Castellanos-Haro, A., Macías-Rodríguez, M. (2022). Microencapsulation by spray-drying of Manilkara zapota pulp and probiotics (Lactobacillus fermentum A15): Assessment of shelf-life in a food matrix. Revista Mexicana de Ingeniería Química 20, 2, 635-648. https://doi.org/10.24275/rmiq/Alim2166

Morales, D. P., Chim, J. F., Barin, J. S., Vizzotto, M., Farias, C. A., Ballus, C. A., and Barcia, M. T. (2021). Influence of the cultivar on the composition of blackberry (Rubus spp.) minerals. Journal of Food Composition and Analysis. 100, 103913. https://doi.org/10.1016/j.jfca.2021.103913

Mudalip, S. K. A., Khatiman, M. N., Hashim, N. A., Man, R. C., and Arshad, Z. I. M. (2021). A short review on encapsulation of bioactive compounds using different drying techniques. Materials Today: Proceedings 42, 288–296. https://doi.org/10.1016/j.matpr.2021.01.543

Nogueira, G. F., Soares, C. T., Martin, L. G. P., Fakhouri, F. M., and de Oliveira, R. A. (2020). Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum arabic mixture. Journal of Microencapsulation 37,1, 65–76. https://doi.org/10.1080/02652048.2019.1693646

Oancea, S. (2021). A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10, 9, 1337. https://doi.org/10.3390/antiox10091337

Pellicer, J. A., Fortea, M. I., Trabal, J., Rodríguez-López, M. I., Carazo-Díaz, C., Gabaldón, J. A., and Núñez-Delicado, E. (2018). Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray drying. Powder Technology 338, 591–598. https://doi.org/10.1016/j.powtec.2018.07.080

Pellicer, J. A., Fortea, M. I., Trabal, J., Rodríguez-López, M. I., Gabaldón, J. A., and Núñez-Delicado, E.. (2019). Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technology 347, 179–185. https://doi.org/10.1016/j.powtec.2019.03.010

Quintero-Castaño, V. D., Vasco-Leal, J. F., Cuellar-Nuñez, L., Luzardo-Ocampo, I., Castellanos-Galeano, F., Álvarez-Barreto, C., Bello-Pérez, L. A., and Cortés-Rodriguez, M. (2020). Novel OSA-modified starch from Gros Michel banana for encapsulation of andean blackberry concentrate: production and storage stability. Starch/Staerke 26, 1–11. https://doi.org/10.1002/star.202000180

Rodríguez-Gutiérrez, G., Cardoso, J. C., Rubio-Senent, F., Serrano, A., Borja, R., Fernández-Bolaños, J., and Fermoso, F. G. (2019). Thermally-treated strawberry extrudate: A rich source of antioxidant phenols and sugars. Innovative Food Science and Emerging Technologies 51, 186–19. https://doi.org/10.1016/j.ifset.2018.05.017

Rybak, K., Samborska, K., Jedlinska, A., Parniakov, O., Nowacka, M., Witrowa-Rajchert, D., and Wiktor, A. (2020). The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innovative Food Science and Emerging Technologies 65, 102446. https://doi.org/10.1016/j.ifset.2020.102446

Saini, A., Panwar, D., Panesar, P. S., and Bera, M. B. (2021). Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review. Environmental Chemistry Letters 19, 2, 1107-1134. https://doi.org/10.1007/s10311-020-01109-3

Samborska, K., Jedlińska, A., Wiktor, A., Derewiaka, D., Wołosiak, R., Matwijczuk, A., and Witrowa-Rajchert, D. (2019). The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. Food Bioprocess Technology 12, (6), 919-932. https://doi.org/10.1007/s11947-019-02260-8

Santos, S. S., Rodrigues, L. M., Costa, S. C., & Madrona, G. S. (2019). Antioxidant compounds from blackberry (Rubus fruticosus) pomace: Microencapsulation by spray-dryer and pH stability evaluation. Food Packaging and Shelf Life 20, 100177. https://doi.org/10.1016/j.fpsl.2017.12.001

Sarabandi, K., Jafari, S. M., Mahoonak, A. S., and Mohammadi, A. (2019). Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. International Journal of Biological Macromolecules 140, 59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133

Schulz, M., & Chim, J. F. (2019). Nutritional and bioactive value of Rubus berries. Food Bioscience 31, 100438. https://doi.org/10.1016/j.fbio.2019.100438

Soldatkina, L. M., Novotna, V. O., and Salamon, I. (2017). Degradation kinetics of anthocyanins in acidic aqueous extracts of berries. Вісник ОНУ, 22, 61, 55–66. https://doi.org/10.18524/2304-0947.2017.1(61).94711

Silva-Espinoza, M. A., Ayed, C., Foster, T., Camacho, M. D. M., and Martínez-Navarrete, N. (2020). The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 9, 1, 32. https://doi.org/10.3390/foods9010032

Taofiq, O., Corrêa, RC, Barros, L., Prieto, MA, Bracht, A., Peralta, RM, and Ferreira, IC. (2019). A comparative study between conventional and non-conventional extraction techniques for the recovery of ergosterol from Agaricus blazei Murrill. Food Research International 125, 108541. https://doi.org/10.1016/j.foodres.2019.108541

Toledo-Martín, E. M., García-García, M. D. C., Font, R., Moreno-Rojas, J. M., Salinas-Navarro, M., Gómez, P., and Río-Celestino, D. (2018). Quantification of total phenolic and carotenoid content in blackberries (Rubus Fructicosus L.) using near infrared spectroscopy (NIRS) and multivariate analysis. Molecules 23, 12, 3191. https://doi.org/10.3390/molecules23123191

Vega, E. N., Molina, A. K., Pereira, C., Dias, M. I., Heleno, S. A., Rodrigues, P., and Barros, L. (2021). Anthocyanins from Rubus fruticosus L. and Morus nigra L. applied as food colorants: A natural alternative. Plants 10, 6, 1181. https://doi.org/10.3390/plants10061181

Published
2022-09-29
How to Cite
Cortes-Rodriguez, M., Gil-González, J., & Ortega-Toro, R. (2022). Influence of the feed composition and the spray drying process on the quality of a powdered mixture of blackberry (Rubus glaucus Benth). Revista Mexicana De Ingeniería Química, 21(3), Alim2855. https://doi.org/10.24275/rmiq/Alim2855
Section
Food Engineering