Structural, physicochemical, and emulsifying properties of pectin obtained by aqueous extraction from red pitaya (Hylocereus polyrhizus) peel
Abstract
This work aimed to carry out a straightforward aqueous extraction of pectin from red pitaya peels (RPP), in a drive to promote the circular economy of the settlements where the fruit of this endemic species grows. The average pectin yield was 11.59 g/100 g dry basis, the degree of esterification was 60.35±1.35%, the galacturonic acid content was 54.36±1.03%, and the protein content of 5.86 ± 0.25%. The RPP pectin was analyzed in terms of physicochemical, functional, and structural features. The FTIR spectrum confirmed that the unveiled pectin structure was consistent with that reported for commercial pectins from different botanical sources. Pectin aqueous dispersions exhibited power-law shear thinning behaviour. Corn oil (10 mL) in 150 mL aqueous pectin solutions (0.12, 0.15, 0.30, 0.60 and 0.90%, w/v) emulsions exhibited increasing emulsifying activity and emulsifying stability with increased pectin concentration. The small It was concluded that the RPP pectin is an alternative potential new source of pectin for use in the formation and stabilization of oil-in-water food emulsions.
References
Alpizar-Reyes, E., Carrillo-Navas, H., Gallardo-Rivera, R., Varela-Guerrero, V., Alvarez-Ramirez, J., and Pérez-Alonso, C. (2017). Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. Journal of Food Engineering, 209, 68–75. http://dx.doi.org/10.1016/j.jfoodeng.2017.04.021
AOAC (2006). Official methods of analysis (18 th). Washington DC, USA: Association of Official Analytical Chemists.
Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A., and Kammoun, R. (2017). Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275–282. http://dx.doi.org/10.1016/j.foodchem.2017.05.029
Bayar, N., Friji, M., and Kammoun, R. (2018). Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chemistry, 241, 127–134. http://dx.doi.org/10.1016/j.foodchem.2017.08.051
Bohdanecky, M., and Kovar, J. (1982). Viscosity of polymer solutions (2/AD Jenkins ed.). Amsterdam–Oxford–New York: Elsevier Scientific Publishing. https://doi.org/10.1002/actp.1983.010340714
Cao, L., Lu, W., Mata, A., Nishinari, K., and Fang, Y. (2020). Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers, 242, e116389. https://doi.org/10.1016/j.carbpol.2020.116389
Chhinnan, M. S., McWaters, K. H., and Rao, V. N. M. (1985). Rheological characterization of grain legume pastes and effect of hydration time and water level on apparent viscosity. Journal of Food Science, 50, 1167–1171. https://doi.org/10.1111/j.1365-2621.1985.tb13036.x
Combo, A. M. M., Aguedo, M., Quiévy, N., Danthine, S., Goffin, D., Jacquet, N., Blecker, C., Devaux, J., and Paquot, M. (2013). Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. International Journal of Biological Macromolecules, 52, 148–156. http://dx.doi.org/10.1016/j.ijbiomac.2012.09.006
Cui, J., Ren, W., Zhao, C., Gao, W., Tian, G., Bao, Y., Lian, Y., and Zheng, J. (2020). The structure–property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers, 229, e115524. https://doi.org/10.1016/j.carbpol.2019.115524
Dao, T. A. T., Webb, H. K., and Malherbe, F. (2021). Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocolloids, 113, e106475. https://doi.org/10.1016/j.foodhyd.2020.106475
de Oliveira, C.F., Giordani, D., Lutckemier, R., Gurak, P.D., Cladera-Olivera, F., and Marczak, L.D.F. (2016). Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Science and Technology, 71, 110–115. http://dx.doi.org/10.1016/j.lwt.2016.03.027
Deng, Z., Pan, Y., Chen, W. W., Chen, W. W., Yun, Y., Zhong, Q., Zhang, W., & Chen, H. (2020). Effects of cultivar and growth region on the structural, emulsifying and rheological characteristic of mango peel pectin. Food Hydrocolloids, 103, e105707.
https://doi.org/10.1016/j.foodhyd.2020.105707
Dick, M., Dal Magro, L., Rodrigues, R.C., Rios, A. de O., and Flôres, S.H. (2019). Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance. International Journal of Biological Macromolecules, 123, 900–909. https://doi.org/10.1016/j.ijbiomac.2018.11.126
Dickinson, E. (2018). Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14. https://doi.org/10.1016/j.foodhyd.2017.01.025
Dranca, F., and Oroian, M. (2018). Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International, 113, 327–350. https://doi.org/10.1016/j.foodres.2018.06.065
Dranca, F., Vargas, M., and Oroian, M. (2020). Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocolloids, 100, e105383. https://doi.org/10.1016/j.foodhyd.2019.105383
Einhorn-Stoll, U., and Kunzek, H. (2009). The influence of the storage conditions heat and humidity on conformation, state transitions and degradation behaviour of dried pectins. Food Hydrocolloids, 23, 856–866. https://doi.org/10.1016/j.foodhyd.2008.05.001
FAO/WHO (2010). Compendium of food additive specifications. FAO JECFA Monographs, 73, 17–21. ISBN: 978-92-5-106662-1
García-Sánchez, M. E., Robledo-Ortiz, J. R., Jiménez-Palomar, I., González-Reynoso, O., and González-García, Y. (2020). Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Revista Mexicana de Ingeniería Química, 19, 851–865. https://doi.org/10.24275/rmiq/Bio743
Gharibzahedi, S. M. T., Smith, B., and Guo, Y. (2019). Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. International Journal of Biological Macromolecules, 136, 275–283. https://doi.org/ 10.1016/j.ijbiomac.2019.06.040
Gómez-Díaz, D., and Navaza, J. M. (2003). Rheology of aqueous solutions of food additives: Effect of concentration, temperature and blending. Journal of Food Engineering, 56, 387–392. https://doi.org/10.1016/S0260-8774(02)00211-X
Guimarães, G. C., Júnior, M. C. C., & Rojas, E. E. G. (2009). Density and kinematic viscosity of pectin aqueous solution. Journal of Chemical & Engineering Data, 54, 662–667. https://doi.org/10.1021/je800305a
Güzel, M., and Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food and Bioproducts Processing, 115, 126–133. https://doi.org/10.1016/j.fbp.2019.03.009
Haminiuk, C. W. I., Sierakowski, M. R., Vidal, J. R. M. B., and Masson, M. L. (2006). Influence of temperature on the rheological behavior of whole araçá pulp (Psidium cattleianum sabine). LWT - Food Science and Technology, 39, 427–431. https://doi.org/10.1016/j.lwt.2005.02.011
Hosseini, S. S., Khodaiyan, F., and Yarmand, M. S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules, 82, 920–926. http://dx.doi.org/10.1016/j.ijbiomac.2015.11.007
Hu, J., Wu, Q,, Xie, J., and Zhou, L. (2021). Separation of pigment and pectin from pitaya peel by aqueous two-phase system. Science and Technology of Food Industry, 42(2), 37–41. https://doi.org/10.13386/j.issn1002-0306.2020010087
Ismail, N. S. M., Ramli, N., Hani, M. N., and Meon, Z. (2012). Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana, 41(1), 41–45.
Kazemi, M., Khodaiyan, F., Labbafi, M., Saeid Hosseini, S., and Hojjati, M. (2019). Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chemistry, 271, 663–672. https://doi.org/10.1016/j.foodchem.2018.07.212
Ke, J., Jiang, G., Shen, G., Wu, H., Liu, Y., and Zhang, Z. (2020). Optimization, characterization and rheological behavior study of pectin extracted from chayote (Sechium edule) using ultrasound assisted method. International Journal of Biological Macromolecules, 147, 688–698. https://doi.org/10.1016/j.ijbiomac.2020.01.055
Lai, J. C. H., Mahesan, D., Samat, N. A. S. A., and Baini, R. (2022). Characterization and optimization of extracted pectin from unripe banana and mango fruit peels. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2022.03.580
Manrique, G. D., and Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25, 99–107. https://doi.org/10.1016/S0925-5214(01)00160-0
Markets and Markets (2019). Market research report: Pectin market by type (HM pectin, LM pectin), raw aterial (Citrus fruits, apples, sugar beet), function, application (ood & beverages, pharmaceutical & personal care products, industrial applications), and region - global forecast to 2025. Report code FB 7357 (september). https://www.marketsandmarkets.com/Market-Reports/pectin-market-139129149.html. Accessed: july 15, 2022.
McClements, D. J. (2015). Food Emulsions Principles, Practices, and Techniques (3rd ed.). New York: CRC Press. ISBN: 978-1498726689.
Montoya-Arroyo, A., Schweiggert, R. M., Pineda-Castro, M.-L., Sramek, M., Kohlus, R., Carle, R., and Esquivel, P. (2014). Characterization of cell wall polysaccharides of purple pitaya (Hylocereus sp.) pericarp. Food Hydrocolloids, 35, 557–564. http://dx.doi.org/10.1016/j.foodhyd.2013.07.010
Mort, A. J., Qiu, F., and Maness, N. O. (1993). Determination of the pattern of methyl esterification in pectin. Distribution of contiguous nonesterified residues. Carbohydrate Research, 247, 21–35. https://doi.org/10.1016/0008-6215(93)84238-2
Moussout, H., Ahlafi, H., Aazza, M., and Bourakhouadar, M. (2016). Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polymer Degradation Stability, 130, 1–9.
http://dx.doi.org/10.1016/j.polymdegradstab.2016.05.016
Ndjouenkeu, R., Goycoolea, F. M., Morris, E. R., and Akingbala, J. O. (1996). Rheology of okra (Hibiscus esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydrate Polymers, 29, 263–269. https://doi.org/10.1016/0144-8617(96)00016-1
Nguyen, K. X., Mai, H. C., Tran, T. K. N., and Nguyen, T. V. (2022). Evaluation of parameters affecting the process of extraction pectin from red flesh dragon fruit peel. Materials Today: Proceedings, 51 (part 2), 1448-1454. https://doi.org/10.1016/j.matpr.2021.12.165
Nguyen, H. H. D., Nguyen, H. V. H., and Savage, G. P. (2019). Properties of pectin extracted from Vietnamese mango peels. Foods 8. doi:10.3390/foods8120629
Pappas, C. S., Malovikova, A., Hromadkova, Z., Tarantilis, P. A., Ebringerova, A., and Polissiou, M. G. (2004). Determination of the degree of esterification of pectinates with decyl and benzyl ester groups by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and curve-fitting deconvolution method. Carbohydrate Polymers, 56, 465–469. https://doi.org/10.1016/j.carbpol.2004.03.014
Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97, 1822–1827.
https://doi.org/10.1016/j.biortech.2005.09.008
Pasandide, B., Khodaiyan, F., Mousavi, Z. E., and Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers, 178, 27–33. http://dx.doi.org/10.1016/j.carbpol.2017.08.098
Peng, J., Bu, Z., Ren, H., He, Q.,Yu, Y., Xu, Y., Wu, J., Cheng, L., and Li, L. (2022). Physicochemical, structural, and functional properties of wampee (Clausena lansium (Lour.) Skeels) fruit peel pectin extracted with different organic acids. Food Chemistry, 386, e132834. https://doi.org/10.1016/j.foodchem.2022.132834
Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., and Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. http://dx.doi.org/10.1016/j.ijbiomac.2016.03.074
Quiroz-González, B., Rodriguez-Martinez, V., Welti-Chanes, J., García-Mateos, M. R., Corrales-García, J., Ybarra-Moncada, M. C., Leyva-Ruelas, G., and Torres, J. A. (2020). Refrigerated storage of high hydrostatic pressure (HHP) treated pitaya (Stenocereus pruinosus) juice. Revista Mexicana de Ingeniería Química 19, 387–399. https://doi.org/10.24275/rmiq/Alim588
Rodríguez Robledo, V., and Castro Vázquez, L. I. (2019). Pectin - Extraction, purification, characterization and applications. In: Masuelli, M. (ed.), Pectins. Pp. 1-19, InTech Open http://dx.doi.org/10.5772/intechopen.85588
Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., and Fernández-Bolaños, J. (2015). Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocolloids, 43, 311–321. http://dx.doi.org/10.1016/j.foodhyd.2014.06.001
Samavati, V., and Manoochehrizade, A. (2013). Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. International Journal of Biological Macromolecules, 60, 427–436. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.050
Santos, J. D. G., Espeleta, A. F., Branco, A., and De Assis, S. A. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers, 92, 1997–2001. http://dx.doi.org/10.1016/j.carbpol.2012.11.089
Tang, P. Y., Wong, C. J., and Woo, K. K. (2011). Optimization of pectin extraction from peel of dragon fruit (Hylocereus polyrhizus). Asian Journal of Biological Sciences, 4, 189–195. https://doi.org/10.3923/ajbs.2011.189.195
Teng, H., He, Z., Li, X., Shen, W., Wang, J., Zhao, D., Sun, H., Xu, X., Li, C., and Zha, X. (2022). Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. Journal of Molecular Structure, 1264, e133309. https://doi.org/10.1016/j.molstruc.2022.133309
Thirugnanasambandham, K., Sivakumar, V., and Prakash Maran, J. (2014). Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydrate Polymers, 112, 622–626. http://dx.doi.org/10.1016/j.carbpol.2014.06.044
Vaillant, F., Perez, A., Davila, I., Dornier, M., and Reynes, M. (2005). Colorant and antioxidant properties of red-purple pitahaya (Hylocereus sp.). Fruits, 60(1), 3–12. https://doi.org/10.1051/fruits:2005007
Woo, K. K., Chong, Y. Y., Li Hiong S. K., and Tang, P. Y. (2010). Pectin extraction and characterization from red dragon fruit (Hylocereus polyrhizus): A preliminary study. Journal of Biological Sciences, 10, 631–636. https://dx.doi.org/10.3923/jbs.2010.631.636
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B., and Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100, 1356–1364. https://doi.org/10.1016/j.foodchem.2005.12.012
Zaid, R. M., Zularisam, A. W., and Mimi Sakinah, A. M. (2016). Effect of process parameters on pectin extraction from dragon fruit (Hylocereus polyrhizus) peels via chemical and physical treatment. Australian Journal of Basic and Applied Sciences, 10(17), 69–74.
Zaidel, D. N. A., Rashid, J. M., Hamidon, N. H., Salleh, L. M., and Kassim, A. S. M. (2017). Extraction and characterisation of pectin from dragon fruit (Hylocereus polyrhizus) peels. Chemical Engineering Transactions, 56, 805–810. https://doi.org/10.3303/CET1756135
Zhang, C., and Mu, T. (2011). Optimisation of pectin extraction from sweet potato (Ipomoea batatas, Convolvulaceae) residues with disodium phosphate solution by response surface method. International Journal of Food Science & Technology, 46, 2274–2280. https://doi.org/10.1111/j.1365-2621.2011.02746.x
Zhang, H., Chen, J., Li, J., Yan, L., Li, S., Ye, X., Liu, D., Ding, T., Linhardt, R. J., Orfila, C., and Chen, S. (2018). Extraction and characterization of RG-I enriched pectic polysaccharides from mandarin citrus peel. Food Hydrocolloids, 79, 579–586. https://doi.org/10.1016/j.foodhyd.2017.12.002
Zhang, W., Fan, X., Gu, X., Gong, S., Wu, J., Wang, Z., Wang, Q., and Wang, S. (2020). Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace. Food Hydrocolloids, 100, e105454.

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.