Conventional and non-conventional extraction of functional compounds from jiotilla (Escontria chiotilla) fruits and evaluation of their antioxidant activity
Abstract
There is a growing interest in obtaining bioactive compounds from underexplored plant organisms such as jiotilla (Escontria chiotilla), a species of the Cactaceae family whose fruit is a source of betalains and phenolic compounds. Therefore, it is relevant to establish an extraction methodology that allows a higher yield of bioactive compounds and greater functional activity to be obtained. In this study, the conventional extraction process was optimized to obtain betalains, phenolic compounds, and antioxidant activity from jiotilla extracts and results were compared with those obtained by ultrasound-assisted and ultrasound-microwave extraction. Optimum conditions for conventional extraction of betalains (90.56 ± 0.88 mg/100 g fresh weight (gfw)) and phenolic compounds (129.12 ± 14.21 mg/100 gfw) were 37.5% v/v ethanol, an m : v ratio of 1 : 20, and 40 min maceration with shaking. Ultrasound-assisted extraction increased the phenolic compound content of the extract by 34.01% and its antioxidant activity by 25.68%, a positive correlation being found between these parameters. Ultrasound-microwave extraction did not improve extraction yields compared to the other two technologies. These results show that the extraction method affects the content of functional compounds and antioxidant activity and pinpoint that jiotilla fruits can be a viable alternative for extraction of betalains and phenolic compounds.
References
Akhtar, M.N., Mushtaq, Z., Ahmad, N., Khan, M.K., Ahmad, M.H., Hussain, A.I. and Imran, M. (2019). Optimal ultrasound-assisted process extraction, characterization, and functional product development from flaxseed meal derived polysaccharide gum. Processes 7, 189–206. https://doi.org/10.3390/pr7040189
Albuquerque, B. R., Oliveira, B. P. P., Barros, L. and Ferreira, I. C. F. R. (2020). Could fruits be a reliable source of food colorants ? Pros and cons of these natural additives. Critical Reviews in Food Science and Nutrition 61, 1–31. https://doi.org/10.1080/10408398.2020.1746904
Ardestani, S. B., Sahari, M. A. and Barzegar, M. (2015). Effect of extraction and processing conditions on organic acids of barberry fruits. Journal of Food Biochemistry 39(5), 554–565. https://doi.org/10.1111/jfbc.12158
Betancourt, C., Cejudo-bastante, M. J., Heredia, F. J. and Hurtado, N. (2017). Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii ( Ker Gawl ) Haw cactus fruit. Food Research International Journal 101, 173–179. https://doi.org/10.1016/j.foodres.2017.09.007
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
Boudries, H., Nabet, N., Chougui, N., Souagui, S., Loupassaki, S., Madani, K. and Dimitrov, K. (2019). Optimization of ultrasound ‑ assisted extraction of antioxidant phenolics from Capparis spinosa flower buds and LC – MS analysis. Journal of Food Measurement and Characterization 13, 2241–2252. https://doi.org/10.1007/s11694-019-00144-1
Bourhia, M., Elmahdaoui, H., Ullah, R., Bari, A. and Benbacer, L. (2019). Promising physical, physicochemical, and biochemical background contained in peels of prickly pear fruit growing under hard ecological conditions in the mediterranean countries. BioMed Research International, 9873146. https://doi.org/10.1155/2019/9873146
Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Cardoso-Ugarte, G. A., Sosa-Morales, M. E., Ballard, T., Liceaga, A. and San Martín-González, M. F. (2014). Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT - Food Science and Technology 59(1), 276–282. https://doi.org/10.1016/j.lwt.2014.05.025
Carreón-Hidalgo, J. P., Franco-Vásquez, D. C., Gómez-Linton, D. R. and Pérez-Flores, L. J. (2022). Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Research International 151, 110821. https://doi.org/10.1016/j.foodres.2021.110821
Castellanos-Santiago, E. and Yahia, E. L. (2008). Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry 56, 5758–5764. https://doi.org/10.1021/jf800362t
Cejudo-Bastante, M. J., Chaalal, M., Louaileche, H., Parrado, J. and Heredia, F. J. (2014). Betalain profile, phenolic content, and color characterization of different parts and varieties of Opuntia ficus-indica. Journal of Agricultural and Food Chemistry 62(33), 8491–8499. https://doi.org/10.1021/jf502465g
Dávila-Hernández, G., Sánchez-Pardo, M. E., Gutiérrez-López, G. F., Necoechea-Mondragon, H. and Ortiz-Moreno, A. (2019). Effect of microwave pretreatment on bioactive compounds extraction from xoconostle (Opuntia joconostle) by-products. Revista Mexicana de Ingeniera Quimica 18(1), 191–204. https://doi.org/10.24275/UAM/IZT/DCBI/REVMEXINGQUIM/2019V18N1/DAVILA
Eseberri, I., Trepiana, J., Léniz, A., Gómez-García, I., Carr-Ugarte, H., González, M., and Portillo, M. P. (2022). Variability in the beneficial effects of phenolic compounds: A Review. Nutrients 14(9), 1–20. https://doi.org/10.3390/nu14091925
García-Cayuela, T., Gómez-Maqueo, A., Guajardo-Flores, D., Welti-Chanes, J. and Cano, M. P. (2019). Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. Journal of Food Composition and Analysis 76, 1–13. https://doi.org/10.1016/j.jfca.2018.11.002
García-Cruz, L., Dueñas, M., Santos-Buelgas, C., Valle-Guadarrama, S. and Salinas-Moreno, Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemistry 234, 111–118. https://doi.org/10.1016/j.foodchem.2017.04.174
García-Cruz, L., Valle-Guadarrama, S., Salinas-Moreno, Y. and Joaquín-Cruz, E. (2013). Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) fruits. Plant Foods for Human Nutrition 68(4), 403–410. https://doi.org/10.1007/s11130-013-0391-8
García-Cruz, L., Valle-Guadarrama, S., Salinas-Moreno, Y. and Luna-Morales, C. C. (2016). Postharvest quality, soluble phenols, betalains content, and antioxidant activity of Stenocereus pruinosus and Stenocereus stellatus fruit. Postharvest Biology and Technology 111, 69–76. https://doi.org/10.1016/j.postharvbio.2015.07.004
Gómez-Linton, D.R., Navarro-Ocaña, A., Alavez, S., Pinzón-López, L., Trejo-Aguilar, G.M. and Pérez-Flores, L. J. (2019). Effect of sonication on the content of bixin, norbixin, total phenols and antioxidant activity of extracts of five achiote accessions. Revista Mexicana de Ingeniería Química 12(3), 505–511. Retrieved from http://www.redalyc.org/articulo.oa?id=62029966013
Gondim de Albuquerque, J., Escalona-Buendía, H. E., Tribuzy de Magalhães Cordeiro, A. M., dos Santos Lima, M., de Souza Aquino, J., and da Silva Vasconcelos, M. A. (2021). Ultrasound treatment for improving the bioactive compounds and quality properties of a Brazilian nopal (Opuntia ficus-indica) beverage during shelf-life. LWT- Food Science and Technology 149, 111814. https://doi.org/10.1016/j.lwt.2021.111814
Guerrero-Rubio, M. A., Escribano, J., García-Carmona, F. and Gandía- Herrero, F. (2020). Light emission in betalains : From fluorescent flowers to biotechnological applications. Trends in Plant Science 25(2), 159–175. https://doi.org/10.1016/j.tplants.2019.11.001
Gutiérrez-Grijalva, E. P., Ambriz-Pére, D. L., Leyva-López, N., Castillo-López, R. I. and Heredia, J. B. (2016). Review: Dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutricion 66(2), 87–100. PMID: 29737665
Kuhn, M (2016) The desirability package 2.1 [Computer software]. Function optimization and ranking via desirability function. R package version 2.1. Available at: https://cran.r-project.org/web/packages/desirability/index.html. Accessed: May 21, 2022.
Li, Z., Fan, Y. and Xi, J. (2019). Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry 277, 246–260. https://doi.org/10.1016/j.foodchem.2018.10.119
Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A. and Cerkal, R. (2017). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004
Melgar, B., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Rodriguez-Lopez, A. D., & Garcia-Castello, E. M. (2019). Ultrasound and microwave assisted extraction of Opuntia fruit peels biocompounds: Optimization and comparison using RSM-CCD. Molecules 24(19), 1–16. https://doi.org/10.3390/molecules24193618
Nazeri, M.A. and Zain, N. M. (2018). Effect of different operating parameters on extraction of active compounds from pitaya peel by microwave assisted extraction (MAE). Jurnal Teknologi 2, 51–58. https://doi.org/ 10.11113/jt.v80.10974
Osorio-Esquivel, O., Ortiz-Moreno, A., Álvarez, V. B., Dorantes-Álvarez, L. and Giusti, M. M. (2011). Phenolics , betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International 44, 2160–2168. https://doi.org/10.1016/j.foodres.2011.02.011
Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology 57(12), 4299–4315. https://doi.org/10.1007/s13197-020-04433-2
Pérez-Loredo, M. G., Hernández De Jesús, L. and Barragán-Huerta, B. E. (2017). Extracción de compuestos bioactivos de pitaya roja (Stenocereus stellatus) aplicando pretratamientos con microondas, ultrasonido y enzimáticos. Agrociencia 51(2), 135–151.
Prakash Maran, J. and Manikandan, S. (2012). Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes and Pigments 95(3), 465–472. https://doi.org/10.1016/j.dyepig.2012.06.007
Ramirez-Lopez, L. M. and DeWitt, C. A. M. (2014). Analysis of phenolic compounds in commercial dried grape pomace by High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Food Science and Nutrition 2(5), 470–477. https://doi.org/10.1002/fsn3.136
Ramírez-Rodríguez, Y., Martínez-Huélamo, M., Pedraza-Chaverri, J., Ramírez, V., Martínez-Tagüeña, N. and Trujillo, J. (2020). Ethnobotanical, nutritional and medicinal properties of Mexican drylands Cactaceae fruits: Recent findings and research opportunities. Food Chemistry 312, 126073. https://doi.org/10.1016/j.foodchem.2019.126073
Ramli, N. S., Ismail, P. and Rahmat, A. (2014). Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents , and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). The Scientific World Journal, 964731. https://doi.org/10.1155/2014/964731
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical. Free Radical Biology and Medicine 26(98), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M.C., Sabatini, S. and Cossignani, L., Lucini, L. (2019). Impact of conventional / non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International 115, 319–327. https://doi.org/10.1016/j.foodres.2018.11.046
Ruiz Huerta, E. A., Márquez Guzmán, J., Pelayo Zaldívar, C., Barbosa Martínez, C. and Ponce de León García, L. (2015). Escontria chiotilla (Cactaceae): Fruit development, maturation and harvest index. Fruits 70(4), 201–212. https://doi.org/10.1051/fruits/2015013
Sanchez-Gonzalez, N., Jaime-Fonseca, M.R., San Martin-Martinez, E. and Zepeda, L. G. (2013). Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. Journal of Agricultural and Food Chemistry 61, 11995–12004. https://doi.org/10.1021/jf401705h
Sandate-Flores, L., Romero-Esquivel, E., Rodríguez-Rodríguez, J., Rostro-Alanis, M., Melchor-Martínez, E. M., Castillo-Zacarías, C., Ontiveros, P.R., Celaya, M.F.M., Chen, W.N., Iqbal, H.M. N. and Parra -Saldívar, R. (2020). Functional attributes and anticancer potentialities of chico (Pachycereus weberi) and jiotilla (Escontria chiotilla) fruits extract. Plants 9(11), 1–17. https://doi.org/10.3390/plants9111623
Singleton, V. L., Orthofer, R. and Lamuela-Raventós, R. M. (1999). Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology 299, 152–178). http://dx.doi.org/10.1016/S0076-6879(99)99017-1
Soriano-Santos, J., Franco-Zavaleta, M. E., Pelayo-Zaldivar, C., Armella-Villalpando, M. A., Yanez-Lopez, M. L. and Guerrero-Legarreta, I. (2007). A partial characterization of the red pigment from the Mexican fruit cactus “jiotilla.” Revista Mexicana de Ingeniería Química 6(1), 19–25. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1836
Tenore, G. C., Novellino, E. and Basile, A. (2012). Nutraceutical potential and antioxidant benefits of red pitaya ( Hylocereus polyrhizus ) extracts. Journal of Functional Foods 4(1), 129–136. https://doi.org/10.1016/j.jff.2011.09.003
Villa-Hernández, J. M., Mendoza-Cardoso, G., Mendoza-Espinoza, J. A., Vela-Hinojosa, C., Díaz de León-Sánchez, F., Rivera-Cabrera, F., Alia-Tejacal, I. and Pérez-Flores, L. J. (2017). Antioxidant capacity in vitro and in vivo of various ecotypes of Mexican plum (Spondias purpurea L.). Journal of Food Science 82(11), 2576–2582. https://doi.org/10.1111/1750-3841.13862

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.