Influence on pretreatment in CeO2 and Au/CeO2 catalyst to improve the creation of surface defects enabling modification in optical interband.
Abstract
Cerium oxide as a material within heterogeneous catalysis remains a relevant research topic due to its redox behavior, directly related to the presence of oxygen vacancies (Vo-) which are responsible for ceria’s high oxygen storage capacity. CeO2 also have been employed as a support for active noble metal particles; in particular, supported gold catalyst has been proposed as a candidate to be used in different reactions such as CO oxidation, catalytic combustion of hydrocarbons, WGS reaction, among others. Despite its relevance, few works have a detailed understanding of the pretreatment effect on these catalysts. For this reason, in this work, we study the in situ behavior of CeO2 and Au/CeO2 during different pretreatments in temperature and atmosphere by Raman and Diffuse reflectance UV-Vis. These techniques allow us to follow in real-time the surface changes of Au nanoparticles and CeO2. We demonstrate a direct correlation lattice structural defects of CeO2 with modifications formed by electronic states in the optical interband and, the deposition of Au nanoparticles on the surface of CeO2 allows to improve the properties formed by the electronic states between the valence band and the conduction band by increasing more than twice the structural defects compared to CeO2 alone.
References
Abd El-Moemen, A., Abdel-Mageed, A. M., Bansmann, J., Parlinska-Wojtan, M., Behm, R. J., & Kučerová, G. (2016). Deactivation of Au/CeO2 catalysts during CO oxidation: Influence of pretreatment and reaction conditions. Journal of Catalysis, 341, 160-179. https://doi.org/10.1016/j.jcat.2016.07.005
Acosta-Silva, Y. J., Toledano-Ayala, M., Torres-Delgado, G., Torres-Pacheco, I., Méndez-López, A., Castanedo-Pérez, R., & Zelaya-Ángel, O. (2019). Nanostructured CeO2 thin films prepared by the sol-gel dip-coating method with anomalous behavior of crystallite size and bandgap. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/5413134
Agarwal, S., Lefferts, L., Mojet, B. L., Ligthart, D. M., Hensen, E. J., Mitchell, D. R., ... & Datye, A. K. (2013). Exposed surfaces on shape‐controlled ceria nanoparticles revealed through AC‐TEM and water–gas shift reactivity. ChemSusChem, 6 (10), 1898-1906. https://doi.org/10.1002/cssc.201300651
Audebrand, N., Guillou, N., Auffrédic, J. P., & Louër, D. (1996). The thermal behaviour of ceric ammonium nitrate studied by temperature-dependent X-ray powder diffraction. Thermochimica acta, 286 (1), 83-87. https://doi.org/10.1016/0040-6031(96)02944-9
Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L., & Iglesia, E. (1999). Structure and electronic properties of solid acids based on tungsten oxide nanostructures. The Journal of Physical Chemistry B, 103(4), 630-640. https://doi.org/10.1021/jp983555d
Boubaker, K. (2011). A physical explanation to the controversial Urbach tailing universality. The European Physical Journal Plus, 126 (1), 1-4. https://doi.org/10.1140/epjp/i2011-11010-4
Centeno, M. A., Ramírez Reina, T., Ivanova, S., Laguna, O. H., & Odriozola, J. A. (2016). Au/CeO2 catalysts: structure and CO oxidation activity. Catalysts, 6(10), 158. https://doi.org/10.3390/catal6100158
Chang, M. W., & Sheu, W. S. (2016). Water-gas-shift reaction on reduced gold-substituted Ce1−xO2 (111) surfaces: the role of Au charge. Physical Chemistry Chemical Physics, 19 (3), 2201-2206. https://doi.org/10.1039/C6CP07185F
Choudhury, B., Chetri, P., & Choudhury, A. (2015). Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles. Journal of Experimental Nanoscience, 10 (2), 103-114. https://doi.org/10.1080/17458080.2013.801566
Coelho, A. A. (2018). TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. Journal of Applied Crystallography, 51 (1), 210-218. https://doi.org/10.1107/S1600576718000183
da Silva, A. N., Pinto, R. C., Freire, P. T., Junior, J. A. L., Oliveira, A. C., & Josué Filho, M. (2015). Temperature and high-pressure effects on the structural features of catalytic nanocomposites oxides by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 763-773. https://doi.org/10.1016/j.saa.2014.11.081
Daniel, M., & Loridant, S. (2012). Probing reoxidation sites by in situ Raman spectroscopy: differences between reduced CeO2 and Pt/CeO2. Journal of Raman Spectroscopy, 43 (9), 1312-1319. https://doi.org/10.1002/jrs.4030
Deshpande, S., Patil, S., Kuchibhatla, S. V., & Seal, S. (2005). Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied Physics Letters, 87 (13), 133113. https://doi.org/10.1063/1.2061873
Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical society reviews, 35 (3), 209-217. https://doi.org/10.1039/B514191E
Filtschew, A., Hofmann, K., & Hess, C. (2016). Ceria and its defect structure: new insights from a combined spectroscopic approach. The Journal of Physical Chemistry C, 120 (12), 6694-6703. https://doi.org/10.1021/acs.jpcc.6b00959
Freakley, S. J., He, Q., Kiely, C. J., & Hutchings, G. J. (2015). Gold catalysis: a reflection on where we are now. Catalysis Letters, 145 (1), 71-79. https://doi.org/ 10.1007/s10562-014-1432-0
Gunkel, F., Christensen, D. V., Chen, Y. Z., & Pryds, N. (2020). Oxygen vacancies: The (in) visible friend of oxide electronics. Applied physics letters, 116 (12), 120505. https://doi.org/10.1063/1.5143309
Guo, M., Lu, J., Wu, Y., Wang, Y., & Luo, M. (2011). UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir, 27 (7), 3872-3877. https://doi.org/10.1021/la200292f
Haruta, M. (1997). Size-and support-dependency in the catalysis of gold. Catalysis today, 36 (1), 153-166. https://doi.org/10.1016/S0920-5861(96)00208-8
Haruta, M., Yamada, N., Kobayashi, T., & Iijima, S. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis, 115 (2), 301-309. https://doi.org/10.1016/0021-9517(89)90034-1
Hassanien, A. S., & Akl, A. A. (2016). Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices and Microstructures, 89, 153-169. https://doi.org/10.1016/j.spmi.2015.10.044
Hernández, J. A., Gómez, S. A., Zepeda, T. A., Fierro-González, J. C., & Fuentes, G. A. (2015). Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction. ACS Catalysis, 5 (7), 4003-4012. https://doi.org/10.1021/acscatal.5b00739
Huang, X. S., Sun, H., Wang, L. C., Liu, Y. M., Fan, K. N., & Cao, Y. (2009). Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 90 (1-2), 224-232. https://doi.org/10.1016/j.apcatb.2009.03.015
Karpenko, A., Leppelt, R., Plzak, V., & Behm, R. J. (2007). The role of cationic Au3+ and nonionic Au0 species in the low-temperature water–gas shift reaction on Au/CeO2 catalysts. Journal of catalysis, 252 (2), 231-242. https://doi.org/10.1016/j.jcat.2007.09.017
Kosacki, I., Suzuki, T., Anderson, H. U., & Colomban, P. (2002). Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 149 (1-2), 99-105. https://doi.org/10.1016/S0167-2738(02)00104-2
Lakshmanan, P., Averseng, F., Bion, N., Delannoy, L., Tatibouët, J. M., & Louis, C. (2013). Understanding of the oxygen activation on ceria-and ceria/alumina-supported gold catalysts: a study combining 18O/16O isotopic exchange and EPR spectroscopy. Gold Bulletin, 46 (4), 233-242. https://doi.org/10.1007/s13404-013-0103-z
Lee, Y., He, G., Akey, A. J., Si, R., Flytzani-Stephanopoulos, M., & Herman, I. P. (2011). Raman analysis of mode softening in nanoparticle CeO2−δ and Au-CeO2−δ during CO oxidation. Journal of the American Chemical Society, 133 (33), 12952-12955. https://doi.org/10.1021/ja204479j
Lykaki, M., Pachatouridou, E., Carabineiro, S. A., Iliopoulou, E., Andriopoulou, C., Kallithrakas-Kontos, N., & Konsolakis, M. (2018). Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 230, 18-28. https://doi.org/10.1016/j.apcatb.2018.02.035.
Ovando-Medina, V. M., Farías-Cepeda, L., Pérez-Aguilar, N. V., de la Rosa, J. R., Martínez-Gutiérrez, H., Romero-Galarza, A., & Cayetano-Castro, N. (2018). Facile synthesis of low band gap ZnO microstructures. Revista Mexicana de Ingeniería Química, 17 (2), 455-462. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando
Padilla-Rosales, I., López-Juárez, R., López-Pacheco, G., Falcony, C., & González, F. (2020). Near infrared photon-downshifting in Yb3+-doped titanates: The influence of intrinsic defects. Journal of Alloys and Compounds, 834, 155081. https://doi.org/10.1016/j.jallcom.2020.155081
Pushkarev, V. V., Kovalchuk, V. I., & d'Itri, J. L. (2004). Probing defect sites on the CeO2 surface with dioxygen. The Journal of Physical Chemistry B, 108 (17), 5341-5348. https://doi.org/10.1021/jp0311254
Reina, T. R., Ivanova, S., Delgado, J. J., Ivanov, I., Idakiev, V., Tabakova, T., & Odriozola, J. A. (2014). Viability of Au/CeO2–ZnO/Al2O3 catalysts for pure hydrogen production by the water–gas shift reaction. Chem. Cat. Chem., 6 (5), 1401-1409. https://doi.org/10.1002/cctc.201300992
Rösken, L. M., Körsten, S., Fischer, C. B., Schönleber, A., van Smaalen, S., Geimer, S., & Wehner, S. (2014). Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. Journal of nanoparticle research, 16 (4), 1-14. https://doi.org/10.1007/s11051-014-2370-x
Sartoretti, E., Novara, C., Giorgis, F., Piumetti, M., Bensaid, S., Russo, N., & Fino, D. (2019). In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts. Scientific reports, 9 (1), 1-14. https://doi.org/10.1038/s41598-019-39105-5
Sartoretti, E., Novara, C., Fontana, M., Giorgis, F., Piumetti, M., Bensaid, S., Russo, N., & Fino, D. (2020). New insights on the defect sites evolution during CO oxidation over doped ceria nanocatalysts probed by in situ Raman spectroscopy. Applied Catalysis A 596, 117517. https://doi.org/10.1016/j.apcata.2020.117517
Schilling, C., & Hess, C. (2018). Real-Time Observation of the Defect Dynamics in Working Au/CeO2 Catalysts by Combined Operando Raman/UV–Vis Spectroscopy. The Journal of Physical Chemistry C, 122 (5), 2909-2917. https://doi.org/10.1021/acs.jpcc.8b00027
Schoonheydt, R. A. (2010). UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. Chemical Society Reviews, 39 (12), 5051-5066. https://doi.org/ 10.1039/C0CS00080A
Thill, A. S., Lobato, F. O., Vaz, M. O., Fernandes, W. P., Carvalho, V. E., Soares, E. A., ... & Bernardi, F. (2020). Shifting the band gap from UV to visible region in cerium oxide nanoparticles. Applied Surface Science, 528, 146860. https://doi.org/10.1016/j.apsusc.2020.146860
Tiwari, S., Khatun, N., Patra, N., Yadav, A. K., Bhattacharya, D., Jha, S. N., ... & Sen, S. (2019). Role of oxygen vacancies in Co/Ni Substituted CeO2: A comparative study.Ceramics International, 45 (3), 3823-3832. https://doi.org/10.1016/j.ceramint.2018.11.053
Trogadas, P., Parrondo, J., & Ramani, V. (2012). CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes. ACS applied materials & interfaces, 4 (10), 5098-5102. https://doi.org/10.1021/am3016069
Trovarelli, A., & Fornasiero, P. (2013). Chemical Physics and Chemistry: Catalysis by ceria and related materials. (Vol. 12). World Scientific, Singapore. Pp.4-909
Varez, A., Garcia-Gonzalez, E., & Sanz, J. (2006). Cation miscibility in CeO2–ZrO2 oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis. Journal of Materials Chemistry, 16 (43), 4249-4256. https://doi.org/ 10.1039/B607778A
Vindigni, F., Manzoli, M., Damin, A., Tabakova, T., & Zecchina, A. (2011). Surface and inner defects in Au/CeO2 WGS catalysts: Relation between Raman properties, reactivity, and morphology. Chemistry–A European Journal, 17 (16), 4356-4361. https://doi.org/10.1002/chem.201003214
Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48 (1), 178.
https://doi.org/10.1103/PhysRevB.48.178
Widmann, D., Leppelt, R., & Behm, R. J. (2007). Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation. Journal of Catalysis, 251 (2), 437-442. https://doi.org/10.1016/j.jcat.2007.07.026
Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267-297.https://doi.org/ 10.1146/annurev.physchem.58.032806.104607
Yaghoubi, H., Li, Z., Chen, Y., Ngo, H. T., Bhethanabotla, V. R., Joseph, B., ... & Takshi, A. (2015). Toward a visible light-driven photocatalyst: the effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles. Acs Catalysis, 5 (1), 327-335. https://doi.org/10.1021/cs501539q
Zhang, R. R., Ren, L. H., Lu, A. H., & Li, W. C. (2011). Influence of pretreatment atmospheres on the activity of Au/CeO2 catalyst for low-temperature CO oxidation. Catalysis Communications, 13 (1), 18-21. https://doi.org/10.1016/j.catcom.2011.06.013
Ziemba, M., Ganduglia-Pirovano, M. V., & Hess, C. (2021). Insight into the mechanism of the water–gas shift reaction over Au/CeO2 catalysts using combined operando spectroscopies. Faraday Discussions, 229, 232-250. https://doi.org/10.1039/C9FD00133F

Copyright (c) 2022 Revista Mexicana de Ingeniería Química

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By publishing your paper in our journal you are also granting it the copyright of the information that it contains.