Study of the corrosion inhibition of copper in synthetic seawater by Equisetum arvense as green corrosion inhibitor

  • A. Esquivel-López
  • C. Cuevas-Arteaga
  • M. G. Valladares-Cisneros
Keywords: Green corrosion inhibitor, Equisetum arvense, copper, synthetic seawater.


Extract of the stems of Equisetum arvense was studied as a natural corrosion inhibitor (NCI) in synthetic seawater exposing samples of copper. To determine the protection of the metal by the NCI, electrochemical tests using potentiodynamic polarization curves, electrochemical impedance spectroscopy and linear polarization resistance were performed at room temperature. The morphological characterization of the material with and without NCI was carried out by scanning electron microscopy. The chemical composition of the NCI was determined by Fourier transform-infrared spectroscopy (FTIR) and gas chromatography coupled to mass spectrometry (GC-MS). The results showed that Equisetum arvense acts as a mixed-type NCI, achieving an inhibition efficiency of 53.78% when using 1000 ppm of NCI. From EIS the charge transfer resistance increased in the first 21 h, obtaining an inhibition efficiency of 87.5%. LPR results showed similar behavior than EIS at the same concentration. FTIR revealed that the chemical structure of the compounds of methanol extract of Equisetum arvense have functional groups such as: -OH, C-H, C=O and C-O, whereas GC-MS showed that eight compounds are present in the NCI.


Abdallah, M. Radwan, M., Shahera, Shohayeb, S. Abdelhamed, S. (2010). Use of some natural oils as crude pipeline corrosion inhibitors in sodium hydroxide solutions. Chem. Technol. Fuels Oils 46, 354-362.

Abdullah, M. D. (2011). A review: plant extracts and oils as corrosion inhibitors in aggressive media. Industrial Lubrication and Tribology 63(4), 227-233.

Al-Mhyawi S. R. (2014). Inhibition of steel corrosion in natural seawater using natural inhibitor (Algae). Asian Journal of Chemistry 26 (22), 7804-7810.

Al-Mobarak N. A., Khaled K. F., Hamed M. N. H., Abdel-Azim K. M. and Abdelshafi N. S. (2010). Corrosion inhibition of copper in chloride media by 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: Electrochemical and theoretical study. Arab. J. Chem. 3 (4), 233-242.

Al-Otaibi, M., Al-Mayouf, A., Khan, M., Mousa, A., Al-Mazroa, S., & Alkhathlan, H. (2014). Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arabian Journal of Chemistry 7(3), 340-346.

Al-Snafi A. E. (2017). The pharmacology of Equisetum arvense - A review. IOSR Journal of Pharmacy 7 (2), 31-42.
Anupama K.K., Ramya K., Shainy K. M., Joseph A. (2015). Adsorption and electrochemical studies of Pimenta dioica leaf extracts as corrosion inhibitor for mild steel in hydrochloric acid. Materials Chemistry and Physics 167, 28-41.

Asgarpanah J. y Roohi E. (2012). Phytochesmitry and pharmacological properties of Equisetum arvense L. Journal of Medicinal Plants Research 6(21), 3689-3693.

ASTM D 1141 – 98. (2003). Standard Practice for the Preparation of Substitute Ocean Water.

Banerjee S., Srivastava V., Singh M.M. (2012). Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium. Corrosion Science 59, 35-41.

Brunoro G., Frignani A., Colledan A., Chiavari C. (2003). Organic films for protection of copper and bronze against acid rain corrosión. Corrosion Science, 45: 2219-2231.

Callister W.D. Jr., Rethwisch D. G. (2009) Materials science and engineering an introduction. 8th Edition. Edited by John Wiley & Sons Inc.

Chen, W., Hong, S., Li, H. B., Luo, H. Q., Li, M., & Li, N. B. (2012). Protection of copper corrosion in 0.5M NaCl solution by modification of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium self-assembled monolayer. Corrosion Science 61, 53–62.

Deyab M. A., Essehlib R. and El Bali B. (2015). Inhibition of copper corrosion in cooling seawater under flowing conditions by novel pyrophosphate. The Royal Society of Chemistry 5, 64326–64334.

Eddy N. O., Odiongenyi A. O., Ameh P. O. & Ebenso E. E. (2012). Corrosion inhibition potential of Daniella oliverri gum exudate for mild steel in acidic medium. Int. J. Electrochem. Sci. 7, 7425 – 7439.

El-Etre, A. Y. (1998). Natural honey as corrosion inhibitor for metals and alloys [I] copper in neutral aqueous solution. Corrosion Science, 40 (11), 1845-50.

Fares M. M., Maayta A. K., Al-Qudah M. M. (2012). Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corrosion Science 60, 112-117.

Feng L., Yang H. & Wang F. (2011). Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution. Electrochimica Acta 58, 427– 436.

Flores-De los Ríos J. P., Sánchez-Carrillo M., Nava-Din C. G., Chacón-Nava J. G., Escobedo-Bretado M. A., Monreal-Romero H. A., Bautista-Margulis R. G., Neri-Flores M. A., Martínez-Villafañe A. (2015). Corrosion inhibition of mild steel using Agavoideae extract in 1M HCl solution. Int. J. Electrochem. Sci.10, 10210-10222.

Fouda A. S., Rashwan S. M., Mohammed A. E. & Khalid M. A. (2016). Corrosion inhibition of copper in aqueous solutions using some plant extracts. Der Pharma Chemica 8(4), 377-390.

Gopi D., Govindaraju K.M., Collins A. P. V., Angeline, D. M. & Kavitha L. (2009). A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water. Corrosion Science 51, 2259-2265.

Hong S., Chen W., Qun L. H., & Bing L. N. (2012). Inhibition effect of 4-amino antipyrine on the corrosion of copper in 3 wt % NaCl solution. Corrosion Science 57, 270-278.

Hu L., Zhang S., Li W., Hou B. (2010). Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater. Corrosion Science 52, 2891-2896.

Koch G. H., Brongers M. P. H., Thompson N. G., Virmani Y. P., Payer J. H. (2002). Corrosion costs and preventive strategies in the United States. NACE No. FHWA-RD-01-156.

Li L., Zhang X., Lei J., He J., Zhang S., Pan F. (2012). Adsorption and corrosion inhibition of Osmanthus fragran leaves extract on carbon steel. Corrosion Science 63, 82-90.

Motawea, M. M., El-Hossiany A., and A. S. Fouda. 2019. Corrosion control of Copper in Nitric acid solution using Chenopodium extract. Int. J. Electrochem. Sci. 14, 1372-87.

Oguzie E. E. (2008). Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild Steel. Corrosion Sci. 50, 2993-2998.

Oniszczuka A., Podgórskia R., Oniszczukb T., Zukiewicz-Sobczakc W., Nowakd R. y Waksmundzka-Hajnos M. (2014). Extraction methods for the determination of phenolic compounds from Equisetum arvense L. herb. Industrial Crops and Products 6, 377-381.

Oukhrib R., El Issami S., Chaouay A., El Mouaden K., Jmiai A., El Ibrahimi B., Bazzi L., Bammou L. & Hilali M. (2015). The inhibitory effect of saffron extract (Crocus sativus L) on copper corrosion in seawater. Chemical Science Review and Letters 4(13), 241-251.

Oukhrib, R., El Issami, El Ibrahimi B., El Mouaden K., Bazzi L., Bammou L., Chaouay A., Salghi R., Jodeh S., Hammouti B. and Amin-Alami A. 2017. Ziziphus lotus as green inhibitor of Copper corrosion in natural sea water. Portugaliae Electrochimica Acta 35(4), 187-200.

Pallag A., Filip G. A., Olteanu D., Clichici S., Baldea I., Jurca T., Micle O., Vicaş L., Marian E., Soriţău O., Cenariu M., Mureşan M. (2018). Equisetum arvense L. extract induces antibacterial activity and modulates oxidative stress, inflammation, and apoptosis in endothelial vascular cells exposed to hyperosmotic stress. Oxidative Medicine and Cellular Longevity. Available at:

Pallag A., Jurca T., Pasca B., Sirbu V., Honiges A., Costuleanu M. (2016). Analysis of phenolic compounds composition by HPLC and assessment of antioxidant capacity in Equisetum arvense L. extracts. Revista de Chimie (Bucharest) 67 (8), 1623-1627

Rahal, C., Masmoudi M., Abdelhedi R., Sabot R., Jeannin M., Bouaziz M., Refait P. 2016. Olive leaf extract as natural corrosion inhibitor for pure Copper in 0.5 M NaCl solution: a study by voltammetry around OCP. Journal of Electroanalytical Chemistry 769, 53-61.

Raichev R., Veleva L. y Valdez B., (2009). Corrosión de metales y degradación de materiales. Michael Schorr Wiener. Baja California: Universidad Autónoma de Baja California.

Raj X. J. & Nallaiyan R. (2012). Corrosion inhibitive properties and electrochemical adsorption behaviour of some piperidine derivatives on brass in natural sea water. J. Solid State Electrochem. 16, 391-402.

Rani, P. Deepa, and S. Selvaraj. 2010. Emblica officinalis (AMLA) leaves extract as corrosion inhibitor for Copper and its alloy (CU-27ZN) in natural sea water. Archives of Applied Science Research, 2, 140-50.

Rihan R., Shawabkeh R. & Al-Bakr N. (2014). The effect of two amine-based corrosion inhibitors in improving the corrosion resistance of carbon steel in sea water. Journal of Materials Engineering and Performance 23 (3), 693-699.
Sastri, V. S., (2011). Adsorption in corrosion inhibition. In: Green Corrosion Inhibitors. Theory and Practice. (Winston Revie Ed.), pp. 103-138. John Wiley & Sons Inc., New Yersey.

Sherif E. M. & Park S. M. (2006). 2-amino-5-ethyl-1, 3, 4- thiadiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions. Corrosion Science 48, 4065-4079.

Shylesha B. S., Venkatesha T. V. and Praveen B. M. (2011). Corrosion inhibition studies of mild steel by new inhibitor in different corrosive medium. Research Journal of Chemical Sciences 1(7), 46-50.

Singh A. K., Mohapatra S. & Pani B. (2016). Corrosion inhibition effect of Aloe vera gel: Gravimetric and electrochemical study. Journal of Industrial and Engineering Chemistry 33, 288-297.

Tian H., Li W. & Hou B. (2011). Novel application of a hormone biosynthetic inhibitor for the corrosion resistance enhancement of copper in synthetic seawater. Corrosion Science 53, 3435-3445.

Yoshiki, Y.; Okubo, K. (1995). Active oxygen scavenging activity of DDMP (2,3-dihydro-2,5- dihydroxy-6-methyl-4H-pyran-4-one) saponin in soybean seed. Bioscience, Biotechnology, and Biochemistry 59 (8), 1556-1557.

Yu. Y., Zhang D., Zeng H., Xie B., Gao L. and Lin T. (2015). Synergistic effects of sodium lauroyl sarcosinate and glutamic acid in inhibition assembly against copper corrosion in acidic solution. Appl. Surf. Sci. 355, 1229-1237.
How to Cite
Esquivel-López, A., Cuevas-Arteaga, C., & Valladares-Cisneros, M. (2019). Study of the corrosion inhibition of copper in synthetic seawater by Equisetum arvense as green corrosion inhibitor. Revista Mexicana De Ingeniería Química, 19(2), 603-616.