Microencapsulation of phenolic compounds: technologies and novel polymers

Keywords: antioxidants, nutraceuticals, polyphenols, microencapsulation, wall material

Abstract

In the last years, the interest and use of bioactive phenolic compounds has increased in food and pharmaceutical fields, this mainly because of the benefits reported by many researchers i.e. antioxidant activity and their potential use as nutraceuticals. Unfortunately, all these benefits are linked generally with their stability, which may be weak depending on the environment conditions. In this tenor, microencapsulation could be a technological option to preserve those molecules and provide them the desired stability. Furthermore, it may permit a better managing and masking of the astringent taste that most of phenolic compounds have. In this review encapsulation techniques such as spray drying, extrusion, molecular inclusion in cyclodextrins, electrospray and liposomes are discussed, also the different wall materials, including polysaccharides, proteins, whey protein, different mucilages, inulin, zein and FucoPol are described.

References

Álvares-Monge-Neto, A., de-Cássia-Bergamasco, R., Faria-de-Moraes, F., Medina-Neto, A., Peralta, R.M. (2017). Development of a technique for psyllium husk mucilage purification with simultaneous microencapsulation of curcumin. PloS one 12, 1-13.

Aguayo-Solís, R., Contreras-Fleury, M., Hernández, B., Vázquez-Muñoz, D. (2019). Gelificación de alginatos. Academia de Ciencias de Morelos, A. C.

Anandharamakrishnan, C., Ishwarya, P. (2015). Introduction to spray drying, In: Anandharamakrishnan, C., Ishwarya, P. (Eds.), Spray drying techniques for food ingredient encapsulation, First ed. John Wiley & Sons, Chichester, West Sussex, U.K., 312.

Anbinder, P.S., Deladino, L., Navarro, A.S., Amalvy, J.I., Martino, M.N. (2011). Yerba mate extract encapsulation with alginate and chitosan systems: Interactions between active compound encapsulation polymers. Journal of Encapsulation and Adsorption Sciences 1, 80-87

Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Dilek Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12, 1496-1547.

Azzi, J., Jraij, A., Auezova, L., Fourmentin, S., Greige-Gerges, H. (2018). Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocolloids 81, 328-340.

Balasundram, N., Sundram, K.M., Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99, 191-203.

Bakry, A.M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M.Y., Mousa, A., Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety 15, 143-182.

Bartkowiak, A., Krawczyńska, W., Federowicz, A. (2017a). Novel polymer systems and additives to protect bioactive substances applied in spray‐drying, In: Ruíz-Ruíz, J.C., Segura-Campos, M.R. (Eds.), New Polymers for Encapsulation of Nutraceutical Compounds, 1st ed. Wiley, West Sussex, U.K., 99-120.

Bartkowiak, A., Sobecka, K., Krudos, A. (2017b). Tailor‐made novel polymers for hydrogel encapsulation processes, In: Ruíz-Ruíz, J.C., Segura-Campos, M.R. (Eds.), New Polymers for Encapsulation of Nutraceutical Compounds, First ed. John Wiley & Sons, West Sussex, U.K., 1-34.

Belščak-Cvitanović, A., Durgo, K., Huđek, A., Bačun-Družina, V., Komes, D. (2018). Overview of polyphenols and their properties, In: Galanakis, C.M. (Ed.), Polyphenols: Properties, Recovery and Applications. Woodhead Publishing, 3-44.

Bernardo, J., Videira, R.A., Valentao, P., Veiga, F., Andrade, P.B. (2019). Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology 133, 110749.

Bhushani, J.A., Kurrey, N.K., Anandharamakrishnan, C. (2017). Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. Journal of Food Engineering 199, 82-92.

Bonechi, C., Donati, A., Tamasi, G., Leone, G., Consumi, M., Rossi, C., Lamponi, S., Magnani, A. (2018). Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophysical Chemistry 233, 55-63.

Boonchu, T., Utama-Ang, N. (2015). Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. Journal of Food Science and Technology 52, 783-792.

Burgain, J., Gaiani, C., Linder, M., Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering 104, 467-483.

Calderón-Oliver, M., Pedroza-Islas, R., Escalona-Buendía, H., Pedraza-Chaverri, J., Ponce-Alquicira, E. (2016). Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocolloids 62, 49-57.

Ceja, L., Ortíz-Basurto, R.I., Medína-Torres, L., Bernad-Bernad, M.J., Calderas, F., González Laredo, R.F., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M., Andrade, I., Manero, O. (2019). Microencapsulation of probiotics (Lactobacillus plantarum) by spray drying with mixtures of Aloe vera mucilage (Aloe barbadensis Miller) and agave fructans (Agave tequilana Weber cv. azul) as new wall materials. Industrial Crops and Products (submitted).

Cervantes-Martínez, C.V., Medina-Torres, L., González-Laredo, R.F., Calderas, F., Sánchez-Olivares, G., Herrera-Valencia, E.E., Gallegos Infante, J.A., Rocha-Guzman, N.E., Rodríguez-Ramírez, J. (2014). Study of spray drying of the Aloe vera mucilage (Aloe barbadensis Miller) as a function of its rheological properties. LWT - Food Science and Technology 55, 426-435.

Cortés-Camargo, S., Acuña, P., Rodríguez-Huezo, M.E., Roman-Guerrero, A., Varela-Guerrero, V., Pérez-Alonso, C. (2018). Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum – Chia mucilage mixtures. Food Research International 116, 1010-1019.

Cortes-Camargo, S., Cruz-Olivares, J., Barragan-Huerta, B.E., Dublan-Garcia, O., Roman-Guerrero, A., Perez-Alonso, C. (2017). Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum-nopal mucilage as new wall materials. Journal of Microencapsulation 34, 395-407.

Ćujić, N., Trifković, K., Bugarski, B., Ibrić, S., Pljevljakušić, D., Šavikin, K. (2016). Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Industrial Crops and Products 86, 120-131.

Cuomo, F., Cofelice, M., Venditti, F., Ceglie, A., Miguel, M., Lindman, B., Lopez, F. (2018). In-vitro digestion of curcumin loaded chitosan-coated liposomes. Colloids and Surfaces. B, Biointerfaces 168, 29-34.

Chávarri, M., Marañon, I., Villarán, C. (2012). Encapsulation technology to protect probiotic bacteria, In: Rigobelo, E. (Ed.), Probiotics. InTech, 501-540.

Chew, S.C., Nyam, K.L. (2016). Microencapsulation of kenaf seed oil by co-extrusion technology. Journal of Food Engineering 175, 43-50.

de-Vos, P., Faas, M.M., Spasojevic, M., Silkkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal 20, 292-302.

Dodziuk, H. (2006). Molecules with Holes – Cyclodextrins, In: Dodziuk, H. (Ed.), Cyclodextrins and Their Complexes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1-30.

Donsì, F., Sessa, M., Mediouni, H., Mgaidi, A., Ferrari, G. (2011). Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Science 1, 1666-1671.

Eltayeb, M., Stride, E., Edirisinghe, M. (2013). Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery. Nanotechnology 24, 465-604.

Estevinho, B.N., Rocha, F. (2018). Application of Biopolymers in Microencapsulation Processes, In: Grumezescu, A.M., Holban, A.M. (Eds.), Biopolymers for Food Design. Academic Press, Cambrige, Massachusets, USA, 191-222.

Estrada-Villegas, G., Martínez-Hernández, R., Morales, J., & Olayo, R. (2019). Incorporation of fluoroquinolone/beta cyclodextrin inclusion complex from polylactic acid electrospun fibers and modeling of the release behavior. Revista Mexicana De Ingeniería Química, 18, 737-747.

Fang, T., Bhandari, B. (2012). Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation, In: Garti, N., McClements, J. (Eds.), Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Woodhead Publishing, Philadelphia, USA, 73-109.

Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology 21, 510-523.

Fanger G.O. (1974). Microencapsulation: A Brief History and Introduction. In: Vandegaer J.E. (eds) Microencapsulation. Springer, Boston, MA, 1-20

Farrel, H.M., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F., Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk—Sixth Revision. Journal of Dairy Science 87, 1541-1674.

Gábor, K. (2013). The examination of UV absorption of polyphenols (Natural substances in UV protection). Hadmérnök 7, 288- 293.

Garrido, E.M.P.J., Cerqueira, A.S., Chavarria, D., Silva, T., Borges, F., Garrido, J.M.P.J. (2018). Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-beta-cyclodextrin. Food Chemistry 254, 260-265.

Gaziola-de-la-Torre, L., de-Pinho, S.C. (2015). Lipid Matrices for Nanoencapsulation in Food: Liposomes and Lipid Nanoparticles, In: Hernández-Sánchez, H., Gutiérrez-López, G.F. (Eds.), Food Nanoscience and Nanotechnology, 1 ed. Springer International Publishing, New York, USA, 99-143.

Ghayempour, S., Mortazavi, S.M. (2013). Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics 71, 717-727.

Gómez-Mascaraque, L.G., Hernández-Rojas, M., Tarancón, P., Tenon, M., Feuillère, N., Vélez-Ruiz, J.F., Fiszman, S., López-Rubio, A. (2017). Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT - Food Science and Technology 81, 77-86.

Gómez-Mascaraque, L.G., Lagarón, J.M., López-Rubio, A. (2015). Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids 49, 42-52.

González-Quijano, G., Arrieta-Baez, D., Dorantes-Alvarez, L., Aparicio-Ozores, G., & Guerrero-Legarreta, I. (2019). Effect of extraction method in the content of phytoestrogens and main phenolics in mesquite pod extracts (Prosopis sp.). Revista Mexicana De Ingeniería Química, 18, 303-312. 

Gülseren, İ., Guri, A., Corredig, M. (2012). Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Digestion 3, 36-45.

Gupta, S.S., Gosh, M. (2016). Formulations and challenges: a special emphasis on stability and safety evaluations, In: Bagchi, D., Nair, S. (Eds.), Developing New Functional Food and Nutraceutical Products, 1a ed. Academic Press, London, UK, 149-177.

Jafari-Nodoushan, M., Mobedi, H., Barzin, J. (2016). Encapsulation via electrohydrodynamic atomizacion spray technology (electrospray), In: Mishra, M. (Ed.), Handbook of Encapsulation and Controlled Release. CRC Press Taylor & Francis Group, Boca Raton, FL., USA, 411-438.

Jaworek, A. (2016). Electrohydrodynamic Microencapsulation Technology, In: Grumezescu, A. (Ed.), Encapsulations, 1 ed. Academic Press, 1-45.

Jeyakumari, A. (2016). Microencapsulation of bioactive food ingredients and controlled release - A review. MOJ Food Processing & Technology 2, 1-9.
Kaewmanee, T., Bagnasco, L., Benjakul, S., Lanteri, S., Morelli, C.F., Speranza, G., Cosulich, M.E. (2014).
Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chemistry 148, 60-69.

Kajiya, K., Kumazawa, S., Nakayama, T. (2002). Effects of external factors on the interaction of tea catechins with lipid bilayers. Bioscience, Biotechnology, and Biochemistry 66, 2330-2335.

Kalogeropoulos, N., Yannakopoulou, K., Gioxari, A., Chiou, A., Makris, D.P. (2010). Polyphenol characterization and encapsulation in β-cyclodextrin of a flavonoid-rich Hypericum perforatum (St John's wort) extract. LWT - Food Science and Technology 43, 882-889.

Khanbabaee, K., van-Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports 18, 641-649.

Kornberg, H. (2019). Metabolism, Encyclopaedia Britannica online. Encyclopaedia Britannica, inc.
Kumar, V.S., Rijo, J., Sabitha, S. (2018). Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. International Journal of Biological Macromolecules 110, 318-327.

Labuschange, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International 107, 227-247.

Lourenço, S.C., Torres, C.A.V., Nunes, D., Duarte, P., Freitas, F., Reis, M.A.M., Fortunato, E., Moldão-Martins, M., Beirão-da-Costa, L., Alves, V.D. (2017). Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules 104, 1099-1106.

Maheshwari, H., Agarwal, R., Patil, C., Katare, O.P. (2003). Preparation and pharmacological evaluation of silibinin liposomes. Arzneimittel Forschung Drug Research 53, 420-427.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L. (2004). Polyphenols: food sources and bioavalability. American Journal of Clinical Nutrition 79, 727-747.

Martín-Villena, M.J., Morales-Hernández, M.E., Gallardo-Lara, V., Ruíz-Martínez, M.A. (2009). Técnicas de microencapsulación: una propuesta para microencapsular probióticos. Ars Pharmacéutica. 50, 43-50.

McMurry, J.E. (2012). Biomoléculas: Lípidos, In: McMurry, J.E (Ed.), Química Orgánica, 8th ed. Cengage Learning, México, D. F., 1027 – 1059.

Medina-Torres, L., Brito-De-La-Fuente, E., Torrestiana-Sánchez, B., Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntia ficus-indica). Food Hydrocolloids 14, 417-424.

Medina-Torres, L., Núñez-Ramírez, D.M., Calderas, F., Bernad-Bernad, M.J., Gracia-Mora, J., Rodríguez-Ramírez, J., González-Laredo, R.F., Gallegos-Infante, J.A., Manero, O. (2018). Curcumin encapsulation by spray drying using Aloe vera mucilage as encapsulating agent. Journal of Food Process Engineering 42, 1-12.

Medina-Torres, L., García-Cruz, E.E., Calderas, F., González Laredo, R.F., Sánchez-Olivares, G., Gallegos-Infante, J.A., Rocha-Guzmán, N.E., Rodríguez-Ramírez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus-indica). LWT - Food Science and Technology 50, 642-650.

Medina-Torres, L., Santiago-Adame, R., Calderas, F., Gallegos-Infante, J.A., González-Laredo, R.F., Rocha-Guzmán, N.E., Núñez-Ramírez, D.M., Bernad-Bernad, M.J., Manero, O. (2016). Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin. Industrial Crops and Products 90, 1-8.

Minemoto, Y., Adachi, S., Matsuno, R. (2000). Autoxidation and solvent extraction processes of linoleic acid encapsulated with a polisaccaride by freeze drying. Food Science and Technology Research 6, 221-224.

Mishra, M., (2016a). Materials of natural origin for encapsulation, In: Mishra, M. (Ed.), Handbook of encapsulation and controlled release. CRC Press Taylor & Francis Group, Boca Raton, FL., USA, 493-515.

Mishra, M. (2016b). Overview of encapsulation and controlled release, In: Mishra, M. (Ed.), Handbook of encapsulation and controlled release. CRC Press Taylor & Francis Group, Boca Raton, FL., USA, 2-19.

Moghaddam, M.K., Mortazavi, S.M., Khayamian, T. (2015). Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. Journal of Electrostatics 73, 56-64.

Moschona, A., Liakopoulou-Kyriakides, M. (2018). Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads. Journal of Microencapsulation 35, 229-240.

Moser, P., Telis, V.R.N., de Andrade Neves, N., Garcia-Romero, E., Gomez-Alonso, S., Hermosin-Gutierrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry 214, 308-318.

Mourtzinos, I., Salta, F., Yannakopoulou, K., Chiou, A., Karathanos, V.T. (2007). Encapsulation of olive leaf extract in beta-cyclodextrin. Journal of Agricultural and Food Chemistry 55, 8088-8094.

Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science 1, 1806-1815.

Nesterenko, A., Alric, I., Silvestre, F., Durrieu, V. (2013). Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products 42, 469-479.

Nie, X., Wang, L., Wang, Q., Lei, J., Hong, W., Huang, B., Zhang, C. (2018). Effect of a sodium alginate coating infused with tea polyphenols on the quality of fresh Japanese Sea Bass (Lateolabrax japonicas) fillets. Journal of Food Science 83, 1695-1700.

Özkan, G., Bilek, S.E. (2014). Microencapsulation of natural food colourants. International Journal of Nutrition and Food Science 3, 145-156.

Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., Bansal, Y.K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy 9, 293-304.

Pandita, D., Kumar, S., Poonia, N., Lather, V. (2014). Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Research International 62, 1165-1174.

Parlamento Europeo. (2009). Reglamento (CE) N° 258/97 del Parlamento Europeo y del Consejo sobre nuevos alimentos y nuevos ingredientes alimentarios, In: Parlamento Europeo (Ed.). Diario Oficial, 10.

Parzanese, M. (2013). Tecnologías para la industria Alimentaria. Microencapsulación, In: Ministerio de Producción y Trabajo (Ed.). Secretaría de Agroindustria, Buenos Aires, Argentina, 1 - 20.

Pasukamonset, P., Kwon, O., Adisakwattana, S. (2016). Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food Hydrocolloids 61, 772-779.

Pauck, C., de Beer, D., Aucamp, M., Liebenberg, W., Stieger, N., Human, C., Joubert, E. (2017). Inulin suitable as reduced-kilojoule carrier for production of microencapsulated spray-dried green Cyclopia subternata (honeybush) extract. LWT - Food Science and Technology 75, 631-639.

Pu, C., Tang, W., Li, X., Li, M., Sun, Q. (2019). Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocolloids 87, 29-37.

Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie 50, 586-621.

Ranadheera, C.S., Liyanaarachchi, W.S., Chandrapala, J., Dissanayake, M., Vasiljevic, T. (2016). Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends in Food Science & Technology 57, 178-187.

Raneva, V.G., Hase, T., Yasukawa, T., Shimasaki, H. (2004). Antioxidant activity and incorporation in soybean phosphatidylcholine membranes of catechins protecting alpha-tocopherol against lipid peroxidation. Journal of Oleo Science 53, 425-436.

Rigon, R. T., Zapata-Norena, C.P. (2016). Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). Journal of Food Science and Technology 53, 1515-1524.

Robards, K., Antolovich, M. (1997). Analytical chemistry of fruit bioflavonoids. The Analyst 122, 11R-34R.

Rocha-Guzman, N.E., Gallegos-Infante, J.A., Gonzalez-Laredo, R.F., Harte, F., Medina-Torres, L., Ochoa-Martinez, L.A., Soto-Garcia, M. (2010). Effect of high-pressure homogenization on the physical and antioxidant properties of Quercus resinosa infusions encapsulated by spray-drying. Journal of Food Science 75, N57-N61.

Rutz, J.K., Borges, C.D., Zimbiazi, R.C., Crizel-Cardozo, M.M., Kuck, L.S., Noreña, C.P.Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry 220, 59-66.

Saénz, C., Tapia, S., Chavez, J., Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry 114, 616-622.

Santiago-Adame, R., Medina-Torres, L., Gallegos-Infante, J.A., Calderas, F., González-Laredo, R.F., Rocha-Guzmán, N.E., Ochoa-Martínez, L.A., Bernad-Bernad, M.J. (2015). Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT - Food Science and Technology 64, 571-577.

Serna-Cock, L., Vallejo-Castillo, V., García-González, E. (2012). Gel de Aloe vera (Aloe barbadensis Miller) en la encapsulacion de una bacteria acido lactica. Vitae 19, S168-S170.

Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., Huang, Q. (2018). Use of gelatin and gum arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107, 1800-1810.

Shao, P., Wang, P., Niu, B., Kang, J. (2018). Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. International Journal of Biological Macromolecules 119, 53-59.

Singh, H., Thompson, A., Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems, In: Garti, N., McClements, J. (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, Philadelphia, USA, pp. 287-318.

Soto-Castro, D., Gutiérrez, M.C., M., L.-M.F., Santiago-García, P.A., Aragón-Lucero, I., Antonio-Antonio, F. (2019). Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chemistry 272, 715-722.

Sousdaleff, M., Baesso, M.L., Medina-Neto, A., Nogueira, A.C., Marcolino, V.A., Matioli, G. (2013). Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application. Journal of Agricultural and Food Chemistry 61, 955-965.

Stewart, A.J., Stewart, R.F. (2008). Phenols, In: Jørgensen, S.E., Fath, B.D. (Eds.), Encyclopedia of Ecology. Academic Press, pp. 2682-2689.

Sun-Waterhouse, D., Zhou, J., Miskelly, G.M., Wibisono, R., Wadhwa, S.S. (2011). Stability of encapsulated olive oil in the presence of caffeic acid. Food Chemistry 126, 1049-1056.

Takahashi, M., Kitamoto, D., Imura, T., Oku, H., Takara, K., Wada, K. (2008). Characterization and bioavailability of liposomes containing a ukon extract. Bioscience, Biotechnology and Biochemistry 72, 1199-1205.

Tapia-Hernandez, J.A., Torres-Chavez, P.I., Ramirez-Wong, B., Rascon-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C.G., Rangel-Vazquez, N.A., Rodriguez-Felix, F. (2015). Micro- and nanoparticles by electrospray: advances and applications in foods. Journal of Agricultural and Food Chemistry 63, 4699-4707.

Tolun, A., Altintas, Z., Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnolgy 239, 23-33.

Torello, M., Viscasillas, A., del-Pozo, A. (2002). Liposomas (I). Conceptos generales y relación con las estructuras cutáneas. Offarm 21, 188 - 190.

Trucillo, P., Campardelli, R., Aliakbarian, B., Perego, P., Reverchon, E. (2018). Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. The Journal of Supercritical Fluids 135, 152-159.

Trujillo-Cárdenas, L., Camacho-Barrón, M., Cano-Sarmiento, C., Duarte-Vázquez, M., Viveros-Contreras, R., & Rosado-Loria, J. (2018). development of an infant formula high in alpha-lactalbumin with only a2 beta-casein by spray drying, designed to resemble the protein composition of human milk. Revista Mexicana De Ingeniería Química, 18, 215-229. 

Tsai, W.C., Rizvi, S.S.H. (2016). Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends in Food Science & Technology 55, 61-71.

Tsai, W.C., Rizvi, S.S.H. (2017a). Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading. Food Research International 96, 94-102.

Tsai, W.C., Rizvi, S.S.H. (2017b). Simultaneous microencapsulation of hydrophilic and lipophilic bioactives in liposomes produced by an ecofriendly supercritical fluid process. Food Research International 99, 256-262.

van Swaay, D., deMello, A. (2013). Microfluidic methods for forming liposomes. Lab on a chip 13, 752-767.

Vernon-Carter, E.J., Beristain, C.I., Pedroza-Islas, R. (2000). Mesquite gum (Prosopis gum). In Doxastakis, G., Kiosseoglou, V. (Eds.), Novel Macromolecules in Food Systems, Elsevier, Amsterdam, Netherlands, 217-238

Wang, J., Li, H., Chen, Z., Liu, W., Chen, H. (2016). Characterization and storage properties of a new microencapsulation of tea polyphenols. Industrial Crops and Products 89, 152-156.

Wehbe, N., Patra, D., Abdel-Massih, R.M., Baydoun, E. (2019). Modulation of membrane properties by silver nanoparticles probed by curcumin embedded in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine liposomes. Colloids and Surfaces B: Biointerfaces 173, 94-100.

Wink, M. (2010). Introduction: Biochemistry, physiology and ecological functions of secondary metabolites, In: Wink, M. (Ed.), Biochemistry of Plant Secondary Metabolism, 2nd ed. Wiley-Blackwell, West Sussex, United Kingdom, 1-19.

Xu, Q., Qin, H., Yin, Z., Hua, J., Pack, D.W., Wang, C.H. (2013). Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chemical Engineering Science 104, 330-346.

Yahia, E.M., Carrillo-López, A., Bello-Perez, L.A. (2019). Postharvest Physiology and Biochemistry of Fruits and Vegetables, In: Yahia, E.M., Carrillo-López, A. (Eds.), Carbohydrates 1st ed. Woodhead Publishing, 175-205.

Yurteri, C.U., Hartman, P.P.A., Marijnissen, J.C.M. (2010). Producing pharmaceutical particles via electrospraying with an emphasis on nano structured particles - A review. KONA Powder and Particle Journal 28, 91-115.

Zhang, J.Q., Liu, J., Li, X.L., Jasti, B.R. (2007). Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug delivery 14, 381-387.

Zhang, L., Huang, J., Si, T., Xu, R.X. (2012). Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Review of Medical Devices 9, 595-612.

Zhao, L., Temelli, F. (2017). Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method. Innovative Food Science & Emerging Technologies 39, 119-128.

Zheng, L., Ding, Z., Zhang, M., Sun, J. (2011). Microencapsulation of bayberry polyphenols by ethyl cellulose, Preparation and characterization. Journal of Food Engineering 104.

Zhou, F., Xu, T., Zhao, Y., Song, H., Zhang, L., Wu, X., Lu, B. (2018). Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids 83, 17-24.

Zhu, J., Wang, Q., Li, H., Zhang, H., Zhu, Y., Omari-Siaw, E., Sun, C., Wei, Q., Deng, W., Yu, J., Xu, X. (2018). Galangin-loaded, liver targeting liposomes: Optimization and hepatoprotective efficacy. Journal of Drug Delivery Science and Technology 46, 339-347.
Published
2019-09-07
How to Cite
Macías-Cortés, E., Gallegos-Infante, J., Rocha-Guzmán, N., Moreno-Jiménez, M., Medina-Torres, L., & González-Laredo, R. (2019). Microencapsulation of phenolic compounds: technologies and novel polymers. Revista Mexicana De Ingeniería Química, 19(2), 491-521. https://doi.org/10.24275/rmiq/Alim642
Section
Food Engineering

Most read articles by the same author(s)