Thermal study of a solar distiller using computational fluid dynamics (CFD)

  • R.J. García-Chávez
  • A.U. Chávez-Ramirez
  • H.I. Villafán-Vidales
  • J.B. Velázquez-Fernández
  • I.P. Hernández Rosales
Keywords: Solar thermal energy, heat transference, , energetic balance

Abstract

Este estudio presenta el diseño, el modelado y el comportamiento de un destilador solar utilizando Computational Fluid Dynamics (CFD). Los parámetros medidos son: 1) el comportamiento de la temperatura interna, 2) la cantidad de cobertura y volumen generada después del proceso de destilación solar, 3) los coeficientes de transferencia obtenidos durante los meses de operación. Los principales resultados indican que el mes de mayo tiene la temperatura promedio más alta del agua en el interior con 44ºC y la mayor producción de agua destilada con un promedio de 1000 ml por día. El mismo mes tuvo un promedio de radiación global incidente por día de 5,8 kWh / m2, que es el más alto entre los meses de operación. Se aplica el modelo de Kumar y Tiwari para estudiar el comportamiento térmico del destilador solar. Para determinar la capacidad de beber del agua destilada, se realizaron los análisis de laboratorio y se encontró que el agua cumple con la norma NOM-127-SSA1-1994. Por lo tanto, el agua limpia se obtuvo al mismo tiempo del sistema diseñado en condiciones climáticas reales.

References

Abdel-Rehim, Z. S., & Lasheen, A. (2005). Improving the performance of solar desalination systems. Renewable Energy, 30(13), 1955-1971. doi:http://dx.doi.org/10.1016/j.renene.2005.01.008

Al-Nimr, M. d. A., & Dahdolan, M. d.-E. (2015). Modeling of a novel concentrated solar still enhanced with a porous evaporator and an internal condenser. Solar Energy, 114, 8-16. doi:https://doi.org/10.1016/j.solener.2015.01.021

Al-Sulttani, A. O., Ahsan, A., Rahman, A., Nik Daud, N. N., & Idrus, S. (2017). Heat transfer coefficients and yield analysis of a double-slope solar still hybrid with rubber scrapers: An experimental and theoretical study. Desalination, 407, 61-74. doi:https://doi.org/10.1016/j.desal.2016.12.017

Banat, F., Jumah, R., & Garaibeh, M. (2002). Exploitation of solar energy collected by solar stills for desalination by membrane distillation. Renewable Energy, 25(2), 293-305. doi:http://dx.doi.org/10.1016/S0960-1481(01)00058-1

Çengel, Y. A., & Ghajar, A. J. (2011). Heat and Mass Transfer: Fundamentals & Applications: McGraw-Hill.

Çengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa. Fundamentos y.
CONAGUA. (2012). http://www.conagua.gob.mx/atlas/.

Duffie, J. A., Beckman, W. A., & Worek, W. (2013). Solar engineering of thermal processes (Vol. 3): Wiley Online Library.

Dunkle, R. V., CSIRO, Scientific, C., & Organization, I. R. (1961). Solar Water Distillation: The Roof Type Still and a Multiple Effect Diffusion Still: C.S.I.R.O.

El, E., Çakmak, G., & Yıldız, C. (2017). Efficiency analysis of tank-type water distillation system integrated with hot water collector. Thermal Science and Engineering Progress, 3, 24-30. doi:https://doi.org/10.1016/j.tsep.2017.05.012

Elashmawy, M. (2017). An experimental investigation of a parabolic concentrator solar tracking system integrated with a tubular solar still. Desalination, 411, 1-8. doi:https://doi.org/10.1016/j.desal.2017.02.003

Fernández, J., & Chargoy, N. (1990). Multi-stage, indirectly heated solar still. Solar Energy, 44(4), 215-223. doi:http://dx.doi.org/10.1016/0038-092X(90)90150-B

Gomez-Daza, J. C., & Ochoa-Martinez, C. J. I. y. C. (2011). Computational fluid dynamics in drying and cooling operations applied to the food industry. 13(2), 103-114.

González, F. (2014). Análisis de las variables medidas en una estación anemo-solarimétrica, para la evaluación del recurso solar y eólico en la ciudad de Tepic, Nayarit. Autonomous University of Nayarit, Nayarit, México.
Guide, A. C.-S. M. J. A. I. (2012). Release 14.5.

Hermosillo Villalobos, J. J. (2013). Estudio de la transferencia de calor en un sistema desalinizador mediante humidificación y deshumidificación de aire. (Phd), UNAM,

INIFAP. (2014). Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias. Retrieved from http://clima.inifap.gob.mx

Kaushal, A. K., Mittal, M. K., & Gangacharyulu, D. (2017). An experimental study of floating wick basin type vertical multiple effect diffusion solar still with waste heat recovery. Desalination, 414, 35-45. doi:https://doi.org/10.1016/j.desal.2017.03.033

Khare, V. R., Singh, A. P., Kumar, H., & Khatri, R. (2017). Modelling and Performance Enhancement of Single Slope Solar Still Using CFD. Energy Procedia, 109, 447-455. doi:https://doi.org/10.1016/j.egypro.2017.03.064

Kumar, S., & Tiwari, G. N. (1996). Estimation of convective mass transfer in solar distillation systems. Solar Energy, 57(6), 459-464. doi:https://doi.org/10.1016/S0038-092X(96)00122-3

PNUMA. (2012). Medio ambiente para el futuro que queremos. Retrieved from http://www.unep.org/geo/pdfs/geo5/GEO5_report_full_es.pdf

Rahbar, N., Asadi, A., & Fotouhi-Bafghi, E. (2018). Performance evaluation of two solar stills of different geometries: Tubular versus triangular: Experimental study, numerical simulation, and second law analysis. Desalination, 443, 44-55. doi:https://doi.org/10.1016/j.desal.2018.05.015

Rahbar, N., Esfahani, J. A., & Fotouhi-Bafghi, E. (2015). Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still – CFD simulation and theoretical analysis. Solar Energy, 113, 313-323. doi:http://dx.doi.org/10.1016/j.solener.2014.12.032

Ranjan, K. R., & Kaushik, S. C. (2013). Energy, exergy and thermo-economic analysis of solar distillation systems: A review. Renewable and Sustainable Energy Reviews, 27(0), 709-723. doi:http://dx.doi.org/10.1016/j.rser.2013.07.025

Rashidi, S., Rahbar, N., Valipour, M. S., & Esfahani, J. A. (2018). Enhancement of solar still by reticular porous media: Experimental investigation with exergy and economic analysis. Applied Thermal Engineering, 130, 1341-1348. doi:https://doi.org/10.1016/j.applthermaleng.2017.11.089

Reyes-Vidal, M. Y., Diez, Á. A., Martínez-Silva, A., & Asaff, A. (2012). Investigación, desarrollo tecnológico e innovación para el cuidado y reuso del agua. (Spanish). Research, technology development and innovation for water saving and recycling. (English)(2), 199-216.

Sampathkumar, K., Arjunan, T. V., Pitchandi, P., & Senthilkumar, P. (2010). Active solar distillation—A detailed review. Renewable and Sustainable Energy Reviews, 14(6), 1503-1526. doi:https://doi.org/10.1016/j.rser.2010.01.023

Samuel Hansen, R., & Kalidasa Murugavel, K. (2017). Enhancement of integrated solar still using different new absorber configurations: An experimental approach. Desalination, 422, 59-67. doi:https://doi.org/10.1016/j.desal.2017.08.015

Sharpley, B., Boelter, L. J. I., & Chemistry, E. (1938). Evaporation of water into quiet air from a one-foot diameter surface. 30(10), 1125-1131.

Singh, A. K., Singh, D. B., Mallick, A., Harender, Sharma, S. K., Kumar, N., & Dwivedi, V. K. (2019). Performance analysis of specially designed single basin passive solar distillers incorporated with novel solar desalting stills: A review. Solar Energy, 185, 146-164. doi:https://doi.org/10.1016/j.solener.2019.04.040

Singh, A. K., Singh, D. B., Mallick, A., & Kumar, N. (2018). Energy matrices and efficiency analyses of solar distiller units: A review. Solar Energy, 173, 53-75. doi:https://doi.org/10.1016/j.solener.2018.07.020

Susana Fonseca, Eider Miranda, & Torres, A. (2012). Mathematical model and analitycal solution of operation of a solar pan. Tecnología Química, 32, 154-161.

Tripathi, R., & Tiwari, G. N. (2006). Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar Energy, 80(8), 956-967. doi:https://doi.org/10.1016/j.solener.2005.08.002

Tsilingiris, P. T. (2013). The application and experimental validation of a heat and mass transfer analogy model for the prediction of mass transfer in solar distillation systems. Applied Thermal Engineering, 50(1), 422-428. doi:https://doi.org/10.1016/j.applthermaleng.2012.07.007

Tutorials, A. R. (2015). Wall Condensation Model. Retrieved from https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/cfx_thry/wall_con_mass_trans.html#eq_wall_con_2114

V. Dunkle, R. (1961). Solar water distillation. The roof type still and a multiple effect diffusion still, internat (Vol. V).
Watmuff, J., Charters, & Proctor. (1977). Solar and wind induced external coefficients for solar collectors. Coop Mediterr Pour l’Energie Solaire. 2, 56.
Published
2019-10-08
How to Cite
García-Chávez, R., Chávez-Ramirez, A., Villafán-Vidales, H., Velázquez-Fernández, J., & Hernández Rosales, I. (2019). Thermal study of a solar distiller using computational fluid dynamics (CFD). Revista Mexicana De Ingeniería Química, 19(2), 677-689. https://doi.org/10.24275/rmiq/IE671
Section
Energy Engineering