Rheokinetic and efectiveness during the phenol removal in mescal vinasses with a rotary disks photocatalytic reactor (RDPR)

  • R. S. Gines-Palestino
  • E. Oropeza- De la Rosa
  • C. Montalvo-Romero
  • D. Cantú-Lozano
Keywords: effectiveness, photocatalysis, mescal, rheology, vinasses

Abstract

This research shows rheokinetic removal of phenol in mescal distillery residues in a RDPR, using titanium dioxide as semiconductor, with a residence time of 72 h. The highest phenol removal was 82.39% at 55 rpm and 60% (v/v) diluted vinasses; the optimum values were obtained by canonical analysis. Rheological analysis was carried out with a stirrer and Peltier temperature control, and RheoPlus software. Vinasses showed a satisfactory adjustment to Herschel-Bulkley model, rheological index values (n>1) meaning dilatant flow. Temperature dependence models Arrhenius and Poiseuille were carried out. The kinetic analysis was fitted to Langmuir- Hinshelwood. High shear rates at the disks surface and the dilatancy increased vinasses viscosity, promoting the full contact to the semiconductor, increasing the removal efficiency. The effectiveness factor obtained (0.9981) explained that all the reaction is carried out at the catalyst surface. There was rheokinetic correlation found between the initial yield stress and removed concentration.

References

André, S., Leguerinel, I., Palop, A., Desriac, N., Planchon, S., & Mafart, P. (2019). Convergence of Bigelow and Arrhenius models over a wide range of heating temperatures. International Journal Of Food Microbiology, 291, 173-180.

APHA Standard Methods for the Examination of Water and Wastewater. (2005) 21th ed. American Public Health Association. Washington.

Bird, R. B., Stewart W. E., Lightfoot E. N. (2006). Fenómenos de Transporte. 2°Edición. Ed. Reverté, México.
Cantú-Lozano, D., (1995) Desenvolvimento e utilização de um Agitador Helicoidal de Dupla Hélice como Reômetro. Tese de Doutorado em Engenharía de Alimentos. UNICAMP, Campinas, Brasil. 1,

Cantú-Lozano, D., Rao, M.A., Gasparetto, C.A. (2000) Rheological properties of noncohesive apple dispersion with helical and vane impellers: Effect of concentration and particle size. Journal of Food Process Engineering 23, 373-385.

Cantú-Lozano, D., Velázquez-Macario, M.V., Vallejo-Cantú, N.A., Mauro, M.A., Del Bianchi, V.L., Telis-Romero, J. (2010) Rheological behaviour of vinasse from a Mexican bioethanol factory. Proceedings of XXVIIth International Society Sugar Cane Technologists-ISSCT, Asociación de Técnicos Azucareros de México-ATAM. D.M Hogart ed. (27) March 7-11, Veracruz, México.

Carberry, J.J. (1976). Chemical and Catalytic Reaction Engineering. Chemical Engineering Series McGraw-Hill. Pp. 205-207.

Croeser, N., Babaee, S., Naidoo, P., & Ramjugernath, D. (2019). Investigation into the use of gas hydrate technology for the treatment of vinasse. Fluid Phase Equilibria, 492, 67-77.

De Matos Rodrigues, M., Rodrigues de Sousa, P., Borges, K., de Melo Coelho, L., de Fátima Gonçalves, R., & Teodoro, M. (2019). Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0,8Gd0,2O2-δ/TiO2 particles. Journal of Alloys and Compounds, 808, 151711.

Moctezuma, E. Lopez-Barragan, M.A. Zermeño-Resendiz B.B. (2016). Reaction pathways for the photocatalytic degradation of phenol under different experimental conditions. Revista Mexicana De Ingeniería Química. 15(1), 129-137.

Fisher & Yates. (1963). Statistical Tables for Biological, Agricultural and
Jaramillo-Páez, C., Navío, J., Hidalgo, M., Macías, M. (2018). ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates. Catalysis Today, 313, 12-19.

Levenspiel, O. (1989) The Chemical Reactor Omnibook OSU Book Stores, Inc. Corvallis, Oregon 97339. Pp. 22.3-22.4.
López-Sánchez, G. (2010). Degradación de fenol en un Reactor Fotocatalítico de Discos Rotativos. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Orizaba, México.

Martínez, S., Nuñez-Guerrero, M., Gurrola-Reyes, J., Rutiaga-Quiñones, O., Paredes-Ortíz, A., & Soto, O. (2019). Mescal an Alcoholic Beverage From Agave spp. With Great Commercial Potential. Alcoholic Beverages, 113-140.

Michel, D. (2018). Test of the formal basis of Arrhenius law with heat capacities. Physica A: Statistical Mechanics and Its Applications, 510, 188-199.

Montalvo-Romero, C. (2000) Determinación del coeficiente de transferencia de oxígeno (kL·a) en un reactor de discos rotativos. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto tecnológico de Orizaba, México.

Montalvo Romero, C., Aguilar Ucán, C.A., Cerón Bretón, J.G. y Cantú-Lozano, D. (2012). Fundamentos de la Catálisis Heterogénea: Fotocatálisis En: Tópicos Selectos de Ingeniería Química, Pp. 75-92, ISBN: 978-607-7826-25-5 Universidad Autónoma del Carmen, Campeche, México.

Morales-Zarate, J. A., Paredes-Carrera S.P., Castro-Sotelo, L.V. (2018). Mixed oxides of Zn/Al, Zn/Al-La and Zn-Mg/Al: Preparation, characterization and photocatalytic activity in diclofenac degradation. Revista Mexicana de Ingeniería Química, 17(3), 941-953.

Nikolopoulos, A. N., Igglessi-Markopoulou, O. and Papayannakos, N. (2006). Ultrasound assisted catalytic wet peroxide oxidation of phenol: Kinetics and intraparticle diffusion effects. Ultrasonics Sonochemistry 13(1), 92-97.

Oropeza-De la Rosa, E. (2013) Cálculo de la eficiencia de remoción fotocatalítica de fenol en residuo del proceso de bioetanol (vinazas). Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Orizaba, México.

Oropeza- De la Rosa, E., López-Ávila, L.G., Luna-Solano, G., Urrea-García, G.R., Cantú-Lozano, D. (2019). Dextran treatment and its rheology at bioethanol production process from molasses. Revista Mexicana De Ingeniería Química, 18(2), 543-554.

Ramírez, Y.L. (2013) Diseño, construcción y puesta en marcha de un reactor tubular fotocatalítico (solar/UV-A) CPC para la degradación de desechos químicos orgánicos procedentes de los laboratorios de la escuela de química. Tesis de Maestría en Química Industrial. Universidad Tecnológica De Pereira, Brasil.

Schürgerl, K. (1982) New Bioreactors for Aerobic Process, International Chemical Engineering, Oct. 22(4), 591-610. In: Biochemical Engineering Fundamentals Bailey, J.E. and Ollis, D.F. (1986) McGraw-Hill Co. 626-630.

Shanbghazani, M., Heidarpour, V., Mirzaee, I. (2009) Computer-Aided Analysis of Flow in a Rotating Single Disk World Academy of Science, Engineering and Technology 58, 160-161.

Sohrab, S.H. (2005) A Modified Theory of Laminar Flow Near a Rotating Disk http://www.mech.northwestern.edu/dept/people/faculty/sohrab.html 3.

Villa-Quezada, J. I., García, L., López, C.M., Mora-Quezada, S.A., García A. (2018). Evaluation of solid catalysts used in petroleum refinery and its regeneration potential. Revista Mexicana de Ingeniería Química, 17(3), 927-940.
Published
2019-10-04
How to Cite
Gines-Palestino, R., Oropeza- De la Rosa, E., Montalvo-Romero, C., & Cantú-Lozano, D. (2019). Rheokinetic and efectiveness during the phenol removal in mescal vinasses with a rotary disks photocatalytic reactor (RDPR). Revista Mexicana De Ingeniería Química, 19(2), 639-652. https://doi.org/10.24275/rmiq/Cat673
Section
Catalysis, kinetics and reactors

Most read articles by the same author(s)