Kinetics and statistical approach for 2,5-dichlorophenol degradation in short reaction time by solar TiO2/glass photocatalysis

  • M. M. Morones-Esquivel
  • C. M. Núñez-Núñez
  • L. A. González-Burciaga
  • J. L. Hernández-Mendoza
  • G. I. Osorio-Revilla
  • J. B. Proal-Nájera
Keywords: 2,5-dichlorophenol degradation, solar heterogeneous photocatalysis, short reaction times, kinetics, statistics

Abstract

Aqueous 2,5-dichlorophenol (2,5-DCP) degradation was studied. Degradation was performed by solar photolysis and heterogeneous photocatalysis on TiO2 synthesized by sol-gel method. A thin film solar reactor of 1 m2 surface area was used. Solution was recirculated for 30 min under a laminar regime, with 20° and 26° surface slopes, under different temperatures and radiation. Samples were taken every 5 min to determine chemical oxygen demand (COD) and absorbance at λ= 280 nm. A 23 factorial with covariates and repeated measures experimental design was used to determine degradation kinetics of 2,5-DCP in short reaction times, having two response variables: COD and concentration of 2,5-DCP, determined at 280 nm.  The factors were: reactor inclination angles (20° and 26°), flow (355 L/h and 407 L/h) and process (photolysis and photocatalysis); and covariates: solar radiation, temperature, evaporation and initial concentration of 2,5-DCP. By comparing the kinetic constants of both processes using Student-t statistic, significant differences (p <0.05) between them were found. Degradation reaction of 2,5-DCP in short times by solar photocatalysis, clearly showed a reaction order n = 1, reaching degradation of 75% (20 min), 83% (25 min) and up to 95% (30 min).

References

Alcázar-Medina, F., Núñez-Núñez, C.M., Rodríguez-Rosales, M.D.J., Valle-Cervantes, S., Alarcón-Herrera, M.T. and Proal-Nájera, J.B. (2020). Lead removal from aqueous solution by spherical agglomeration using an extract of agave lechuguilla torr. as biosurfactant. Revista Mexicana de Ingeniería Química 19, 71-84.

Arellano-Cárdenas, S., Gallardo-Velázquez, T., Osorio-Revilla, G. and López-Cortez, M.S. (2008). Preparation of a porous clay heterostructure and study of its adsorption capacity of phenol and chlorinated phenols from aqueous solutions. Water Environment Research 80, 60-67. https://doi.org/10.2175/106143007X220653

Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S. and Sopian, K. (2010). Solar photocatalytic degradation of environmental pollutants using ZnO prepared by sol-gel: 2,4-dichlorophenol as case study. International Journal of Thermal and Environmental Engineering 1, 37-42. https://doi.org/10.5383/ijtee.01.01.006

Bahnemann, D. (2004). Photocatalytic water treatment: solar energy applications. Solar Energy 77, 445–459. https://doi.org/10.1016/j.solener.2004.03.031

Bailón-Salas, A.M., Ordaz-Díaz, L.A., Cháirez-Hernández, I., Alvarado-de la Peña, A. and Proal-Nájera, J.B. (2018). Lead and copper removal from groundwater by spherical agglomeration using a biosurfactant extracted from Yucca decipiens Trel. Chemosphere 207, 278-284. https://doi.org/10.1016/j.chemosphere.2018.05.103

Blanco, J. (2005). Solar Safe Water, (Toner, ed), La Plata, Argentina, 300 p.

Daniel, W.W. and Cross, C.L. (2013). Biostatistics: A foundation for analysis in the Health Sciences, 10th edition. John Wiley & Sons, New York.

Davis A.P. and Hao O.J. (1991). Reactor dynamics in the evaluation of photocatalytic oxidation kinetics. J. Catal. 131, 285-288. https://doi.org/10.1016/0021-9517(91)90345-5

Davis A.P. and Hao O.J. (1992). Reply to comments on “Reactor dynamics in the evaluation of photocatalytic oxidation kinetics”. J. Catal. 136, 629-630. https://doi.org/10.1016/0021-9517(92)90096-Z

Di Paola, A., Augugliaro, V., Palmisano, L., Pantaleo, G. and Savinov, E. (2003). Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry 155, 207-214. https://doi.org/10.1016/S1010-6030(02)00390-8

Dijkstra, M.F.J., Michorius, A., Buwalda, H., Panneman, H.J., Winkelman, J.G.M. and Beenackers, A.A.C.M. (2001). Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catalysis Today 66, 487-494. https://doi.org/10.1016/S0920-5861(01)00257-7

Djaoued, Y., Badilescu, S., Ashrit, P.V., Bersani, D., Lottici, P.P. and Brüning, R. (2002). Low temperature sol-gel preparation of nanocrystalline TiO2 thin films. Journal of Sol-Gel Science and Technology 24, 247-254. https://doi.org/10.1023/A:1015305328932

EPA. (2001). EPA’s Report 440/5-80-032. Ambient Water Quality Criteria for Chlorinated Phenols. Office of Water Regulations and Standards Criteria and Standards Division. United States Environmental Protection Agency, Washington D.C.

Esplugas, S., Giménez, J., Contreras, S., Pascual, E. and Rodríguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research 36, 1034-1042. https://doi.org/10.1016/S0043-1354(01)00301-3

Feitz, A.J., Boyden, B.H. and Waite, T.D. (2000). Evaluation of two solar pilot scale fixed bed photocatalytic reactors. Water Research 34, 3927-3932. https://doi.org/10.1016/S0043-1354(00)00153-6

Gaya, U.I. and Abdullah, A.H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9, 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

Giménez, J., Curcó, D. and Queral, M.A. (1999). Photocatalytic treatment of phenol and 2,4-dichloropenol in a solar plant in the way to scaling-up. Catalysis Today 54, 229-243. https://doi.org/10.1016/S0920-5861(99)00185-6

González-Burciaga, L.A. (2013). Aplicación de fotocatalizadores de dióxido de titanio (TiO2) en la degradación de materia orgánica presente en modelos de agua. Master Thesis, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Durango, Instituto Politécnico Nacional, México.

HACH. (2000). Manual de Análisis de Agua: Procedimientos fotométricos, Procedimientos de titulación y Procedimientos microbiológicos. Hach Company, Colorado.

CDC. (2009). 2,5-dichlorophenol. Available on: http://www.cdc.gov/biomonitoring/25D_BiomonitoringSummary.html. Accessed on: june 15, 2019.

Irigoyen-Campuzano, R., González-Bejar, M., Pino, E., Proal-Nájera, J.B. and Pérez-Prieto, J. (2017). A metal-free, nonconjugated polymer for solar photocatalysis. Chemistry A European Journal 23, 2867-2876. https://doi.org/10.1002/chem.201605064

Łabudzińska, A. and Gorczyńska, K. (1995). The UV difference spectra as a characteristic feature of phenols and aromatic amines. Journal of Molecular Structure 349, 469-472. https://doi.org/10.1016/0022-2860(95)08810-I

López-Ojeda, G.C., Vargas-Zavala, A.V., Gutiérrez-Lara, M.R., Ramírez-Zamora, R.M. and Durán-Moreno, A. (2011). Oxidación fotoelectrocatalítica de fenol y de 4-clorofenol con un soporte de titanio impregnado con TiO2. Revista Internacional de Contaminación Ambiental 27, 75-84.

Luna-Sánchez, R.A., Zermeño-Resendiz, B.B., Moctezuma, E., Contreras-Bermúdez, R.E., Leyva, E. and López-Barragán, M.A. (2013). Fotodegradación de omeprazol en solución acuosa utilizando TiO2 como catalizador. Revista Mexicana de Ingeniería Química 12, 85-95.

Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J. and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis. Catalysis Today 147, 1-59. https://doi.org/10.1016/j.cattod.2009.06.018

Moctezuma, E., Zamarripa, H. and Leyva, E. (2003). Degradación fotocatalítica de soluciones de alta concentración de Paraquat. Revista Internacional de Contaminación Ambiental 19, 117-125.

Moctezuma, E., López-Barragán, M.A. and Zermeño-Resendiz B.B. (2016). Rutas de reacción para la degradación fotocatalítica de soluciones de fenol bajo diferentes condiciones experimentales. Revista Mexicana de Ingeniería Química 15, 129-137.

Morales-Zárate, J.A., Paredes-Carrera, S.P. and Castro-Sotelo, L.V. (2018). Mixed oxides of Zn/Al, Zn/Al-La and Zn-Mg/Al: preparation, characterization and photocatalytic activity in diclofenac degradation. Revista Mexicana de Ingeniería Química 17, 941-953. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Morales

Morones Esquivel, M.M. (2016). Optimización de un sistema integrado de biorremediación- fotocatálisis solar para el tratamiento de aguas residuales de una industria de resinas en Durango, México. Doctoral thesis, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Durango, Instituto Politécnico Nacional, México.

Morones-Esquivel, M.M., Pantoja-Espinoza, J.C., Proal-Nájera, J.B., Cháirez-Hernández, I., Gurrola-Reyes, J.N. and Ávila-Santos, M. (2017). Uso de un reactor de placa plana (TiO2/Vidrio) para la degradación de 2,5-Diclorofenol por fotocatálisis solar. Revista Internacional de Contaminación Ambiental 33, 605-616.

Núñez-Núñez, C.M., Cháirez-Hernández, I., García-Roig, M., García-Prieto, J.C., Melgoza-Alemán, R.M. and Proal-Nájera, J.B. (2018). UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: a kinetic and statistical approach. Reaction Kinetics, Mechanisms and Catalysis 125, 1159–1177. https://doi.org/10.1007/s11144-018-1473-2

Parra, S., Olivero, J., Pacheco, L. and Pulgarin, C. (2003). Structural properties and photoreactivity relationships of substituted phenols in TiO2 suspensions. Applied Catalysis B: Environmental 43, 293-301. https://doi.org/10.1016/S0926-3373(02)00324-7

Pantoja-Espinoza, J.C., Proal-Nájera, J.B., García-Roig, M., Cháirez-Hernández, I. and Osorio-Revilla, G.I. (2015). Eficiencias comparativas de inactivación de bacterias coliformes en efluentes municipales por fotólisis (UV) y por fotocatálisis (UV/TiO2/SiO2). Caso: Depuradora de aguas de Salamanca, España. Revista Mexicana de Ingeniería Química 14, 119-135.

Rincón, A.G., Pulgarin, C., Adler, N. and Peringer, P. (2001). Inactivation between E. coli inactivation and DBP-precursors- dihydroxybenzene isomers- in the photocatalytic process of drinking-water disinfection with TiO2. Journal of Photochemistry and Photobiology A: Chemistry 139, 233-241. https://doi.org/10.1016/S1010-6030(01)00374-4

Riveros-Rosas, D., Herrera-Vázquez, J., Pérez-Rábago, C.A., Arancibia-Bulnes, C.A. and Vázquez-Montiel, S. (2010. Optical design of a high radiative flux solar furnace for Mexico. Solar Energy 84, 792-800. https://doi.org/10.1016/j.solener.2010.02.002

Rubiano, C.M., Laguna, W.A., Zapata, C.E. and Marín, J.M. (2005). Estudio sobre las posibilidades de aplicación de la fotocatálisis heterogénea a los procesos de remoción de fenoles en medio acuoso. Gestión y Ambiente 8, 105-121.

Salas Ayala, H.I. (2018). Degradación de medios de contraste para rayos X, por procesos de oxidación avanzada. Master Thesis, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Durango, Instituto Politécnico Nacional, México.

Sheng, Y., Liang, L., Xu, Y., Wu, D. and Sun, Y. (2008). Low-temperature deposition of the high-performance anatase-titania optical films via a modified sol–gel route. Optical Materials 30, 1310-1315. https://doi.org/10.1016/j.optmat.2007.06.010

Stintzing, A. (2003). Solar photocatalytic treatment of textile wastewater at a pilot plant in Menzel Temime/Tunisia. Thesis, Institut für Thermische Verfahrenstechnik der Technischen Universität Clausthal, Germany.

Thu, H.B., Karkmaz, M., Puzenat, E., Guillard, C. and Herrmann, J.M. (2005). From the fundamentals of photocatalysis to its applications in environment protection and in solar purification of water in arid countries. Research on Chemical Intermediates 31, 449-461. https://doi.org/10.1163/1568567053956671

Uchida, M. and Okuwaki, A. (2003). UV-Vis spectrophotometric determination of the dissociation constants for monochlorophenols in aqueous solution at elevated temperatures. Journal of Solution Chemistry 32, 19-39. https://doi.org/10.1023/A:1022980614320

UNESCO. (2004). Water for People, Water for Life. World Water Assessment Programme. The United Nations World Water Development Report. Available on: http://unesdoc.unesco.org/images/0012/001295/129556e.pdf. Accessed on June 15, 2019.

Vergara-Sánchez, J., Pérez-Orozco, J.P., Suárez-Parra, R. y Hernández-Pérez, I. (2012). Degradation of reactive red 120 azo dye in aqueous solutions using homogeneous/ heterogeneous iron systems. Revista Mexicana de Ingeniería Química 11, 121-131.

Wolfrum E.J. and Turchi C.S. (1992). Comments on “Reactor dynamics in the evaluation of photocatalytic oxidation kinetics”. J. Catal. 136, 626- 628. https://doi.org/10.1016/0021-9517(92)90095-Y

Zhao, J. and Yang, X. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment 38, 645-654. https://doi.org/10.1016/S0360-1323(02)00212-3
Published
2019-09-02
How to Cite
Morones-Esquivel, M., Núñez-Núñez, C., González-Burciaga, L., Hernández-Mendoza, J., Osorio-Revilla, G., & Proal-Nájera, J. (2019). Kinetics and statistical approach for 2,5-dichlorophenol degradation in short reaction time by solar TiO2/glass photocatalysis. Revista Mexicana De Ingeniería Química, 19(2), 555-568. https://doi.org/10.24275/rmiq/Cat732
Section
Catalysis, kinetics and reactors

Most read articles by the same author(s)